




Interconnection of New Cold water channel with Existing Channel of Rihand Stage III

### SCHEMATIC DIAGRAM OF COOLING TOWER











- Interconnection of new CW channel with existing CW channel.
  - By cutting and lifting the RCC wall section of existing channel at interconnection.
  - Work to be carried out with water flow in channel.
  - Work to be carried out with utmost safety and within schedule time.
- Capability building for carrying out similar works in NTPC wherever required.

### **Technical Specification and Analysis**

Test

8002.8 1/s

48.30 °C

37.40 °C

27.50 °C

33.50 °C

66.60 kW

1.802

9166.7 l/s

32.21 °C

33.12 °C

33.75 °C

101.325 kPa

Ń

D::



### A.1 COOLING TOWER THERMAL PERFORMANCE TEST



Parameters

Water Flow Rate

Hot Water Temp.

Cold Water Temp.

Wet Bulb Temp.

Dry Bulb Temp.

Fan Driver Power

Barometric Pressure

Liquid to Gas Ratio

Range

8.00 °C

10.00 °C

12.00 °C

At 27.50 °C Test Wet Bulb

### Tower Performance Report

CT 5B Test Performance Report 16.08.2023 Owner: NTPC Rihand Project: Rihand Location: Bijpur,sonebhadra Manufacturer: NBCC Tower Type: Induced Draft

### Cooling Tower Design and Test Data

Cold Water Temperatures vs. Range

7500.0 l/s

31.19 °C

31.90 °C

32.23 °C

Cold Water Temperature vs. Water Flow At 27.50 °C Test Wet Bulb and 10.90 °C Test Range

8333.3 I/s

32.72 °C

Design

8333.3 Vs

42.50 °C

32.50 °C

27.40 °C

36.00 °C

70.50 kW

1.833

101.325 kPa

8333.3 I/s

31.89 °C

32.51 °C

32.93 °C

| SI. No. DESCRIPTION | UNIT | Parameter |
|---------------------|------|-----------|
|                     |      |           |

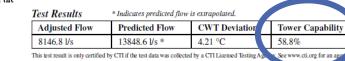
### Guaranteed cold water temperature for the design

- conditions of the flow, range and ambient WBT and Deg C 32.5 relative humidity
- 2 Predicted cold water temperature at test condition (including 0.3 deg C tolerance) Deg C
- 3 Test cold water temperature
- 4 Shortfall in test cold water temperature
- 5 Remarks

### Deg C 38.44

Deg C

33.15


| 38.44 | 7500.0 l/s     | 83           |
|-------|----------------|--------------|
|       | 32.09 °C       | 32           |
| 5.29  | Exit Air Prope | rties<br>Wet |

| Ели Ай Гторе | Wet Bulb Temp | Density | Sp. Vol. | Enthalpy |
|--------------|---------------|---------|----------|----------|
| Design       | 39.62         | 1.09797 | 0.9545   | 163.5000 |
| Test         | 40.34         | 1.09424 | 0.9597   | 169.5500 |

9166.7 l/s

33.43 °C

### Doesn't meet the Guarantee



| Cooling Towers                                            | M/S NBCC                                                                   | M/s Paharpur         |
|-----------------------------------------------------------|----------------------------------------------------------------------------|----------------------|
| Designed (m3/hr)                                          | 120000                                                                     | 40000                |
| Dimensions                                                | 3.885 M X 6.750 M                                                          | 4.035 M X<br>3.300 M |
| Thickness                                                 | 0.200 M at the top to 0.500 M. at the bottom                               |                      |
| water level                                               | was ~ 3.7 Mts.                                                             |                      |
| velocity of water                                         | 1 m/s to 3.5 m/s from upstream of interconnection point to its downstream. |                      |
| CT Capability 5A/5B/6A/6B                                 | 61%, 58%, 63%, 64%                                                         |                      |
| Shortfall in Cold water Temp                              | 5.29 Deg C                                                                 |                      |
| Loss in HR ( Kcal/KWh )                                   | 27.508                                                                     |                      |
| Loss due to poor CT Performace<br>in unit 5 & 6 (Rs/Year) | 11.22 Cr/Year                                                              |                      |
| Helper cell cost (Rs)                                     | 66.29 Cr.                                                                  |                      |
| Pay back period (Year)                                    | 5.91                                                                       |                      |

The interconnection between new and existing CW channel, By cutting and eliminating the RCC wall section 6.5 mts X 4 mts of existing channel at interconnection.

New Channel

**Existing Channel** 



The existing channel carries discharge from CT Unit # 5A & 5B along with CT Unit 6A & 6B and auxiliary CT.

### **Existing Channel features:**

Rihand

- 1. Discharge from CT 5A, 5B, 6A & 6B.
- 2. Total Discharge 120000 m3/hr
- 3. Flow velocity -1 3.5 m/s
- 4. Flow depth  $\sim$  3.7 mts.
- The interconnection work was ideally to be carried out with all CW pump in stop condition

The work was planned to coincide with overhauling schedule of Unit # 6 while Unit #5 is still operational. , when the channel was carrying ~ 60,000 m3 per hour discharge for unit # 5 with a velocity range of 0.8 - 2 m/sec. Flow depth ~ 3.7 mts.

The works of wall cutting and lifting to complete the interconnection work was concluded in 10 days including the preparatory works. 250 mm

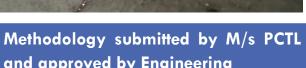
500 mm Existing channel wall X Section

### The methodology of interconnection works Rihand





**Expert Divers.** 




Diamond wire rope cutting machine.



More than 70mts of diamond wire rope.







80 MT crane was deployed to lower the C section into the channel.



C Section





# and approved by Engineering

Approved by Engineering.

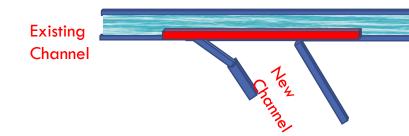
20 mm MS plate 9 mts length to be placed.

Plate to be sealed with wall.

Drilling of holes at the base of wall (at 2 corners) from new channel side.

Drilling of holes at the top of wall (for lifting of the wall).

RCC wall cutting by diamond wire rope operated on machine.


Water filling in the new channel.

Lifting of the wall.

Lifting of the plate. 

### Day -1







Fixing of 20 mm plate on the interconnection wall section.

Ħ

+ <sup>+</sup> \* \*



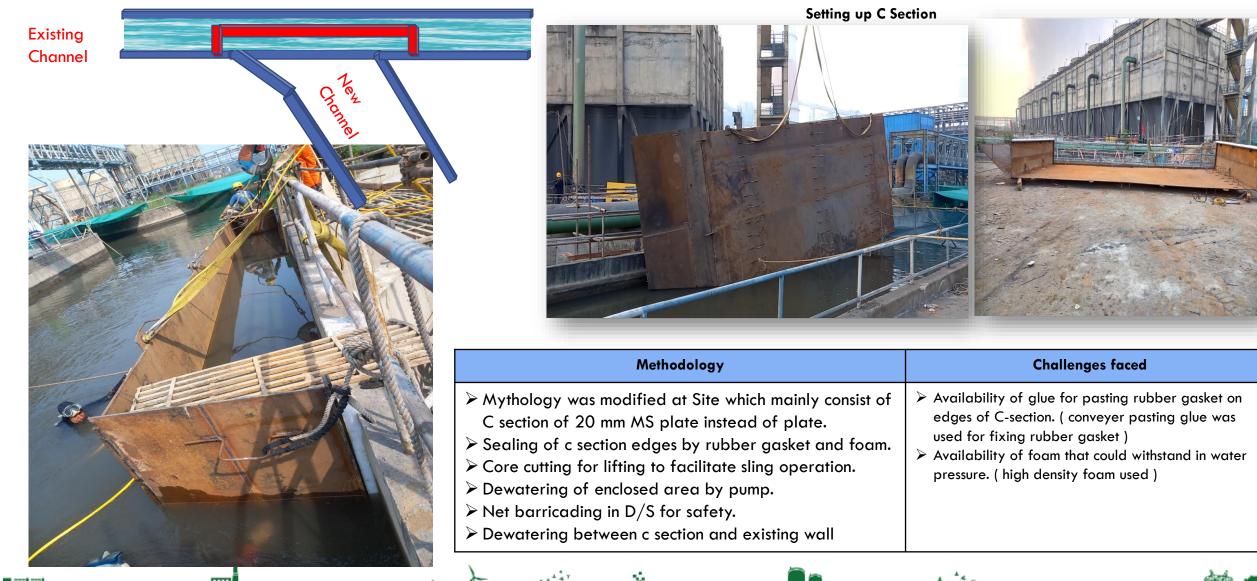
121.11



Weight of the wall ~ 25 MT

### **Cutting & Lifting model**

| Methodology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Challenges faced                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>Approved by Engineering.</li> <li>20 mm MS plate 9 mts length to be placed.</li> <li>Sealing of the plate with wall surface by rubber gasket material to avoid any water leakages</li> <li>Fixing prop supported from opposite wall of the existing channel to keep the 200 mm plate in position.</li> <li>Drilling of holes at the base of wall (at 2 corners) from new channel side.</li> <li>Drilling of holes at the top of wall (for lifting of the wall section).</li> <li>RCC wall cutting by diamond rope.</li> <li>Water filling in the new channel.</li> </ul> | <ul> <li>Plate could not be packed with existing vertical wall due to water flow.</li> <li>Sealing with wall couldn't be possible.</li> <li>Diamond cutting wire was frequently broke down due to high water pressure and 20 mm MS plate plate with existing wall.</li> <li>Plate was close to wall, hence there was no way to loosen the rope from the water side.</li> <li>Resulted in no work progress on Day -1 – 15.02.23.</li> </ul> |  |  |
| <ul> <li>Lifting of the wall.</li> <li>Lifting of the plate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | te ta                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |


0:;

nn

الأرادانا الأزراران







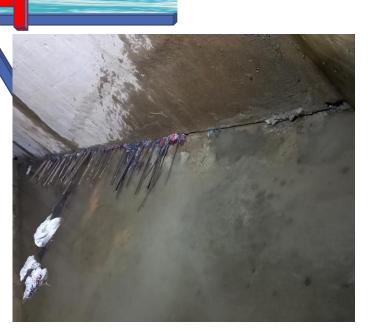
### Day -3 Setting up C Section







D::


### Day -4 Horizontal wall portion cut



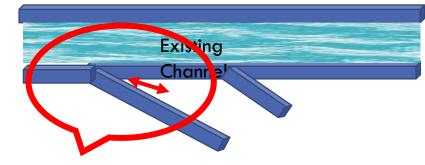
**Existing Channel** 

+ ÷ \* \*

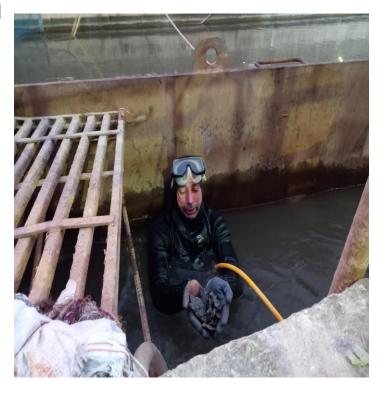




New Channel


Sealing by foam inside and rugs by outside

| Methodology                                                                                                                                                                                    | Challenges faced                                                                                      |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| Metholgy was revised & decided to work with water in c section<br>C section benefit was that water inside was still easing the diving                                                          | Diamond rope frequently getting stuck to due to longer cutting span of 4.5 mts                        |  |
| operation by divers.                                                                                                                                                                           | Due to lower capacity machine, wall thick ness & water pressure cutting rope was breaking – resulting |  |
| Diamond rope cutting machine set-up from new channel.approx. 1-1.5 hrs delay in resuming comparisonDrilling additional holes at bottom 1.5 mts interval to cult wall into underwater wrapping) |                                                                                                       |  |
| 3 sections                                                                                                                                                                                     | Resulted in work progress on Day -4 – 18.02.23                                                        |  |
|                                                                                                                                                                                                | Bottom horizontal of the RCC wall was cut.                                                            |  |


Breakthrough Moment

### Day -5 Under water breaking









11 1 2 1 1 1

. . . . . .



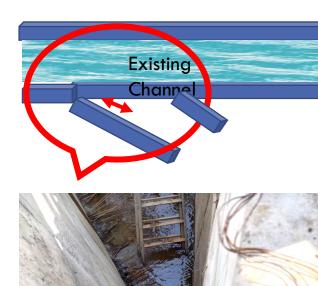
| Methodology                                                | Challenges faced                                                                                                                                                                                               |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Under water jack hammer used for ease drilling operation . | <ul> <li>Space constraint in the kink portion</li> <li>No space for a perpendicular drilling from new channel side</li> <li>Inclined drilling tried but the base of wall exceeded the drawing data.</li> </ul> |

1. 1. 1. 1. 1

###**}** 

đà:

D:;


 $\succ$  Result of the day – 5 – no progress.

#////**/** 

<u>HIII</u>

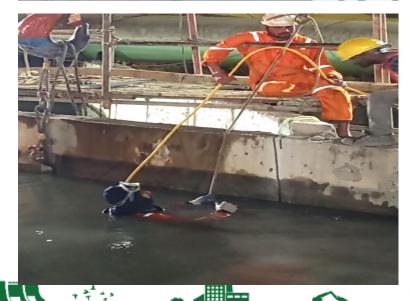
### Day -6 water filling in the new channel





Eliminating the kink



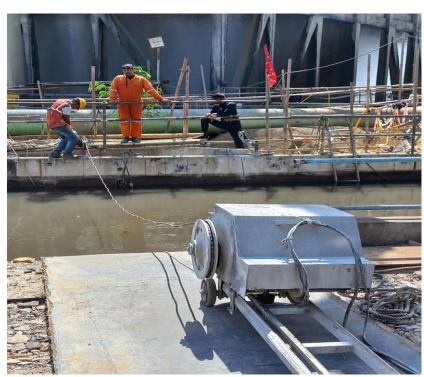

Water filled in adjacent segment of channel to avoid risk of brick wall failure.

. + 41

| Methodology                                                                                                                              | Challenges faced                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Water to be filled before cutting of wall vertically</li> <li>Set up of cutting machine above wall for vertical cut.</li> </ul> | <ul> <li>No challenges.</li> <li>Progress : drilling at kink portion successfully done,<br/>and water filling in new channel done &amp; holes for<br/>lifting RCC Pannel done.</li> </ul> |

D::

1.53




Day -7

### Vertical wall cutting



A CARACTACIÓN



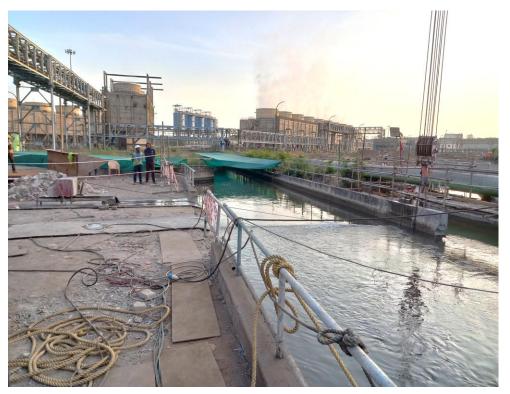
# Pulley used to avoid rope wall contact – major reason of rope breakage.

| Methodology / working steps                                                                                                                      | Challenges faced                                                   |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Set up of cutting machine above wall for vertical cut.                                                                                           | due to space constraint machine could not be<br>placed above wall. |
| <ul> <li>methology revised : set up of machine on the other side of channel</li> <li>Removal of c section &amp; hand rail was removed</li> </ul> | Progress : vertical cutting of wall started.                       |

## Day -8 Vertical wall cutting






| Methodology/ working steps                             | Challenges faced                             |
|--------------------------------------------------------|----------------------------------------------|
| Set up of cutting machine above wall for vertical cut. | Progress : vertical cutting of wall started. |

### 1<sup>st</sup> panel cut and lifted

1::

### Day -9 wall panel cut and lifted









### 3<sup>rd</sup> wall panel cut and lifted

### Methodology/ working steps

Removal of debris ( if any )

. + 1

Restoring of hand rail at existing duct

### railing repairing works

### **Challenges faced**

- Progress :
- 2<sup>nd</sup> panel & 3<sup>rd</sup> panel cuted & removed
- Hand rail reparing work done.
- Interconnection work completed.



- Required conditions for helper cell channel connection
  - Both units in stopped condition (Unit 6 under OH).
  - All CW pumps in stopped condition.

| Description                                  | Days |
|----------------------------------------------|------|
| No. of days from Unit S/D to CW p/p stoppage | 5    |
| No. of days required for execution of work   | 5    |
| Total unit outage days                       | 10   |

| Descriptions                   | Unit | Qty   | Loss<br>(Lakh) |
|--------------------------------|------|-------|----------------|
| DC Loss                        | MU   | 112.5 | 1620           |
| SG incentive Loss              | MU   | 112.5 | 590.63         |
| Oil consumption during startup | KL   | 125   | 100            |
| Marginal contribution loss     |      |       | 22.5           |
| APC loss during Shut down      | MU   | 0.868 | 13.45          |
| APC loss during Startup        | MU   | 0.1   | 1.55           |
| RRAS,SCED,AGC revenue loss     |      |       | 20             |
|                                |      |       | 2368.13        |

| Methodology एनटीपीसी                                                        |                                                               |                                                                                                                                                                                      |                                                                                      |  |
|-----------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|
| Rihand                                                                      | Meine                                                         | Jaology                                                                                                                                                                              | एन्टीपीसी 🛛                                                                          |  |
| Methodology - I                                                             | Methodology - 2                                               | Methodology - 3                                                                                                                                                                      | Methodology - 4                                                                      |  |
| Approved by Engineering.                                                    | Modified at Site.                                             | Modified at Site. Net barricading in D/S for safety.                                                                                                                                 | Walkway after net barricading.                                                       |  |
| 20 mm MS plate 9 mts length to be placed.                                   | C section of 20 mm<br>MS plate.                               | C section of 20 mm MS plate.                                                                                                                                                         |                                                                                      |  |
| Plate to be sealed with wall.                                               | Sealing by rubber gasket and foam.                            | Sealing by rubber gasket and foam.                                                                                                                                                   |                                                                                      |  |
| Drilling of holes at the base of wall (at 2 corners) from new channel side. | Same                                                          | Same                                                                                                                                                                                 | Intermediate holes<br>for contingency.                                               |  |
| Drilling of holes at the top of wall (for lifting of the wall).             | Core cutting for<br>lifting to facilitate<br>sling operation. | Core cutting for lifting to facilitate sling operation.                                                                                                                              | Cutting m/c be<br>placed opposite for<br>vertical cutting.                           |  |
| RCC wall cutting by diamond wire rope operated on machine.                  | Dewatering of<br>enclosed area by<br>pump.                    | Dewatering stopped and decision made to<br>start cutting with water in the enclosure. C<br>section benefit was that water inside was<br>still easing the diving operation by divers. | Wall cutting in 3<br>vertical panels. Kink<br>portion hole drilling<br>from outside. |  |
| Water filling in the new channel.                                           | Wall cutting.                                                 |                                                                                                                                                                                      | Cutting progress is                                                                  |  |
| Lifting of the wall.                                                        | Water filling.                                                |                                                                                                                                                                                      | slow with 1 m/c. 1                                                                   |  |
| Lifting of the plate.                                                       | Wall – Plate lifting.                                         |                                                                                                                                                                                      | nos. additional m/c<br>to be deployed.                                               |  |





| Se. No. | Risk                                                | Mitigation                                                                  |  |
|---------|-----------------------------------------------------|-----------------------------------------------------------------------------|--|
| 1       | Tripping on low water level.                        | Built a brick wall ~40 mts from interconnection area in the new CW channel. |  |
| 2       | High flow of water in the channel.                  | 1. Placing C section along the interconnection. (with proper designe)       |  |
|         |                                                     | 2. Placing safety net in the down stream of the interconnection.            |  |
| 3       | Completion of work within schedule time             | Adequate resources deployed:                                                |  |
|         |                                                     | 1. Two nos. of Concrete cutting machine were deployed.                      |  |
|         |                                                     | 2. ~100 mts of diamond rope available.                                      |  |
|         |                                                     | 3. Core cutting machine, Drilling machine, Jack hammer.                     |  |
|         |                                                     | 4. Availability of 80 MT tyre mounted crane.                                |  |
|         |                                                     | 5. Expert divers and other manpower.                                        |  |
| 4       | Under water fixing of diamond wire rope             | 5 nos. of expert Divers from M/s IDA were deployed.                         |  |
| 5       | Space constraint in the Kink portion.               | Under water drilling by Jack hammer.                                        |  |
| 6       | Diamond rope frequently getting stuck and breaking. | 1. Reducing the span between holes to reduce wire rope length.              |  |
|         |                                                     | 2. Increasing the diameter of the hole.                                     |  |





19

•

# Thank You

) D:;