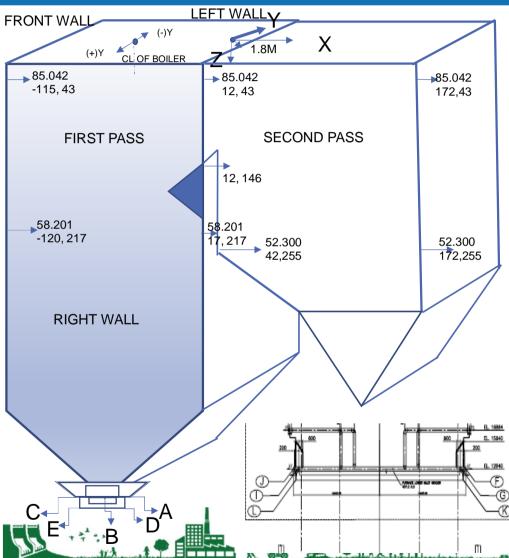

Cost Optimization by In-House Development in Measurement and Calibration Techniques

MEJA

Author:

Pankaj Kumar Singh Chauhan Ashish Kumar Sahu Sandeep Kumar Mishra

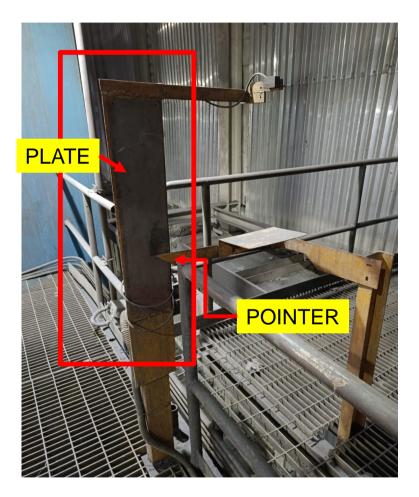
THERMAL EXPANSION IN TOWER TYPE BOILER


LEFT WALL	EAR WALL						-	
Z	105.006 84.500	ELEVATION (TO) m	DIFF. IN ALT. (m)	EXP IN X-DIR. (mm)	EXP IN Y-DIR. (mm)	EXP IN mm/m IN X,Y DIR	EXP IN Z-DIR (mm)	EXP IN Z- DIR mm/m IN Z- DIR
FRONT WALL	RIGHT WALL	105.006 -100.390	5.660	/	/		3	0.7
· · · · · · · · · · · · · · · · · · ·	64.500	100.390 - 87.100	12.300	56	56	5.66	69	4.97
		87.100 - 73.900	13.200	60	60	6.10	146	5.83
	_	73.900 - 58.000	15.900	57	57	5.72	237	5.72
	45.700	58.000 - 43.813	14.187	57	57	5.72	317	5.64
		43.813 - 21.500	22.313	54	54	5.48	429	5.01
	22.680	21.500 - 9.730	11.770	45	45	4.57	488	5.01

Ş,

) D:;

THERMAL EXPANSION IN DOOSAN BOILER



ELEVATIO N (TO) m	LOCATIO N	EXP IN X-DIR. (mm)	EXP IN Y- DIR (mm)	EXP IN Z- DIR (mm)
12640	А	-24		490
12640	В	-40		490
12640	С	-57		490
12640	D	-30		497
12640	E	-50		497
12640	F		57	
12640	G		54	
12640	I		-54	
12640	J		-57	
12640	К		55	
12640	L		-55	
Ì.	Dii	··***** ****		

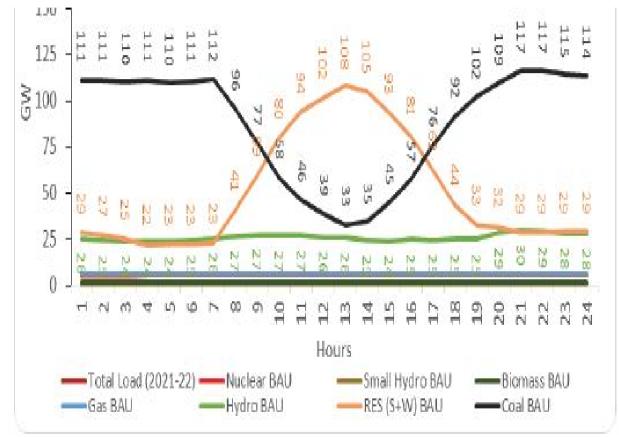
THERMAL EXPANSION IN GE/	ALSTON	M/BHEL B	OILER	ज़रीपीसी NTPC
X X			FIRST PASS	
(+)Y <u>CL OF BOILER</u> 97.410 -115, 43 Z 85.042 12, 43	LOCATION 105.510	ESP –X DIR	EXP –Y DIR	EXP Z DIR
FIRST PASS SECOND PASS	97.410	136.8	73.5	42.9
	69.194	115.8	73.5	216.3
69.194	65.590	131.2	65.7	272.0
65.590 65.590 5.2,216.3 -131.2,272 8.8,272 61.800 61.800	47.58	112.8	73.5	336.8
48, 215.8	27.628	97.4	73.5	445.5
46.212 48.367.5 48.367.5	15.500	68.2	58.1	504.1
RIGHT WALL 48,367.5 48,367.5			SECOND PASS	
27.628	LOCATION	ESP –X DIR	EXP –Y DIR	EXP Z DIR
97.4, 445.5	61.8	171	74.6	215.8
	46.2	171	74.6	367.5
15.500 15.500 68.2, 504.1				

Challenges in Boiler Expansion

- Boiler Expansion :- installed for the measurement of boiler casing and steel movement.
- Boiler Expansion:- local Gauge on a stand which holds the scale on main Building/ Platform and pointer fitted to the steelwork/Waterwall/Header, as appropriate.
- As per NTPC -LMI, Frequency of reading is from startup to full Load after each modification and long shutdown of boiler.
- Lack of attention to Boiler Expansion in the precommissioning period can lead to prolonged outages later.

Challenges in Boiler Expansion-Reading

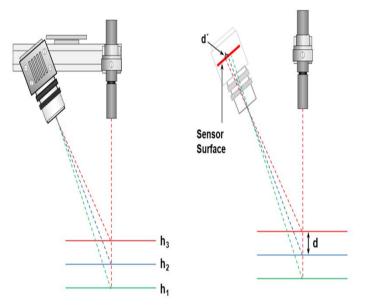
It is unlikely that any indicator will read the true theoretical expansion movement, due to a number of factors such as:


- The Scatter band in theoretical expansion coefficient data (Refer Table)
- Operator error e.g. reading out of parallax.
- Relative casing to tube movements.
- Time lag of heat flow.
- "Shake down' (jerky movement) of boiler during firing.
- Expansion of Main Building Steelwork.

THERMAL EXPANSION DATA FOR CARBON STEEL AND ALLOY STEEL CONTAINING UP TO 3% CHROMIUM

Temperatur e (Degree C)	Avg Thermal Expansion Coeff.t (X10 ⁻⁶ per °C)	Toleranc e %
20-100	12.07	±5.6
200	12.05	±4.0
300	13.10	±3.1
400	13.55	±3.3
500	14.00	±3.6

NEED OF ONLINE MEASUREMENT


- Increased rate of wear on high-temperature components.
- Thermal fatigue, Thermal expansion, Corrosion & its Related Issues, Fireside Corrosion and many others.
- Decreased thermal efficiency at low load (high turndown).
- Increased fuel costs due to more frequent unit starts.
- Generation from one 660MW Unit: 14.85 Billion Units (Considering 6.25% APC)
- □ Revenue Loss Per day: 3.09 Crore

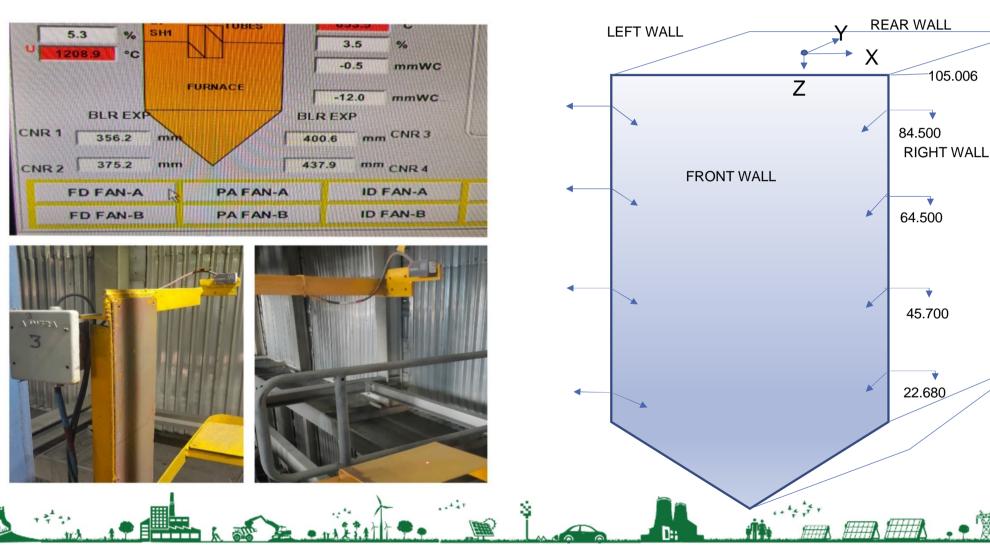
|--|

ELEVATION	CORNER-1	CORNER-2	CORNER-3	CORNER-4
84.5	2	2	2	2
64.5	2	2	2	2
45.7	2	2	2	2
22.68	2	2	2	2

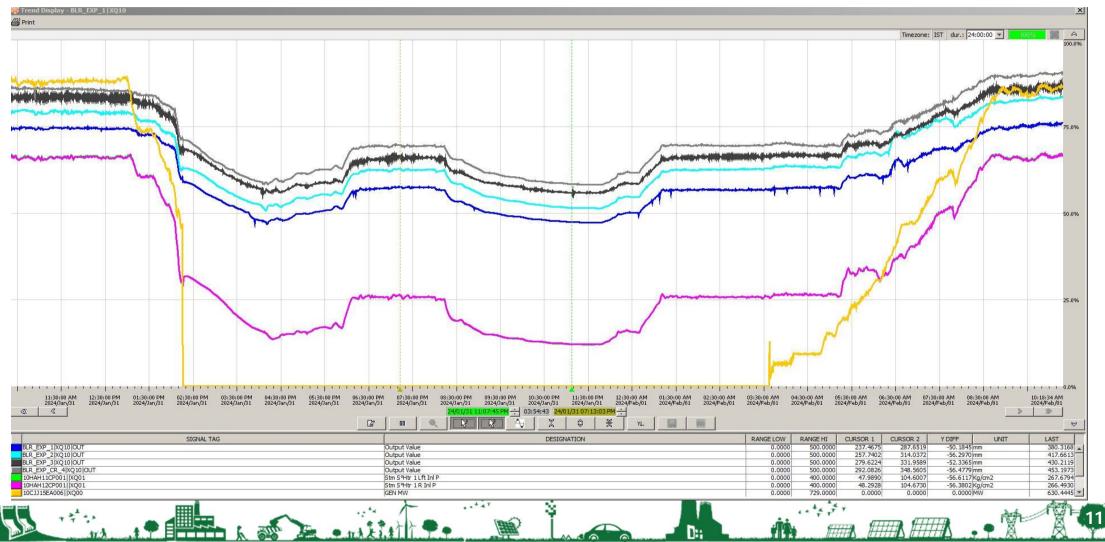
 optoNCDT1420-Smart Laser Triangulation Displacement Sensor" is the best available sensor for this application. This sensor had a repeatability of 0.5micrometer (as high accuracy sensor required for Boiler Expansion)

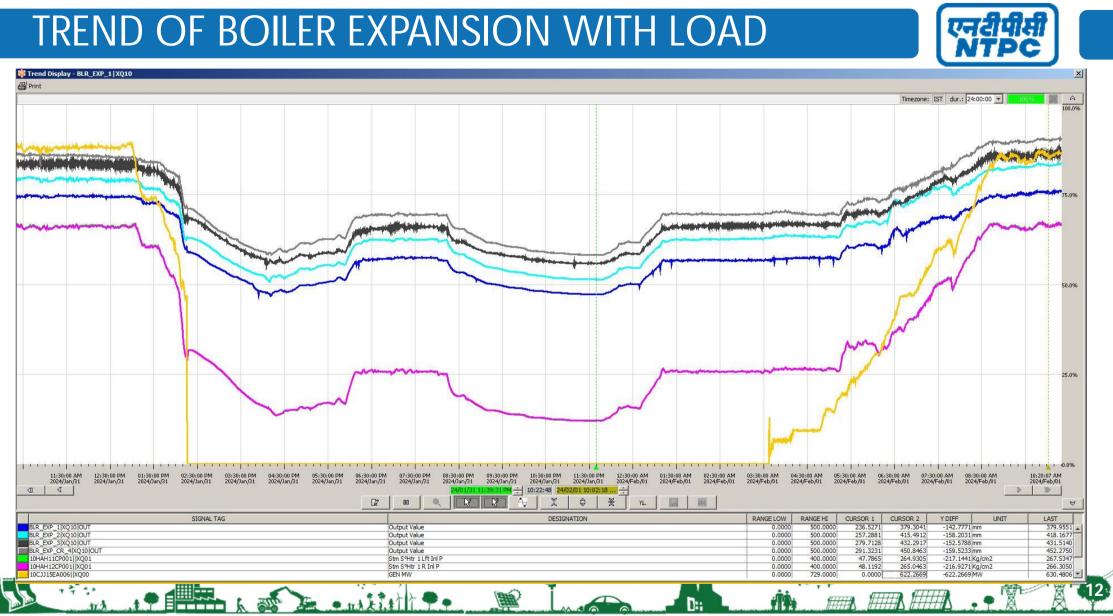
> Total Number of Sensor: 32 Nos Cost of Sensor: 157,246.00 Total Cost: 50,31,872.00 Rs.

optoNCD

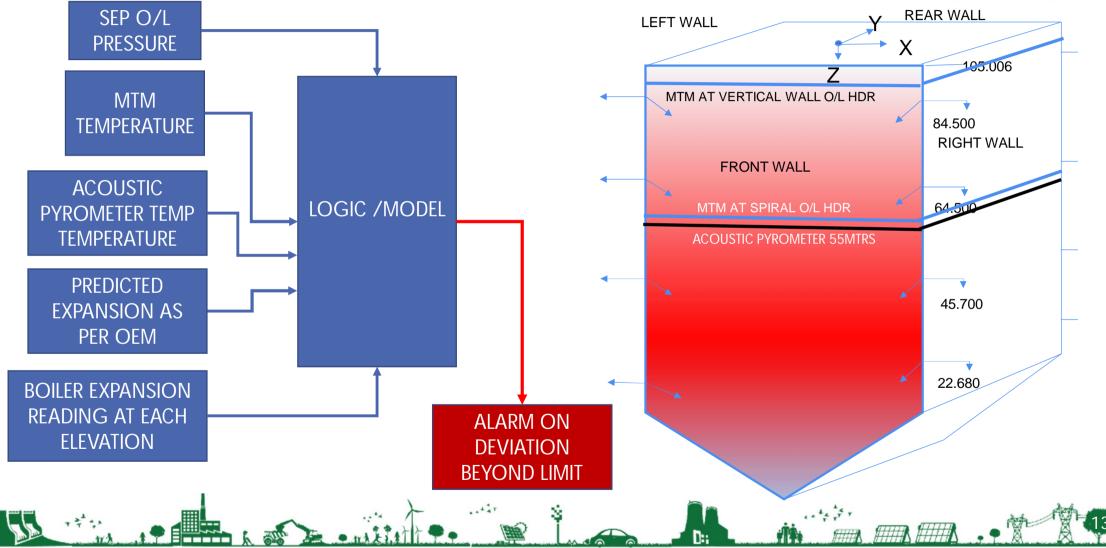

mandantan

alantantantan

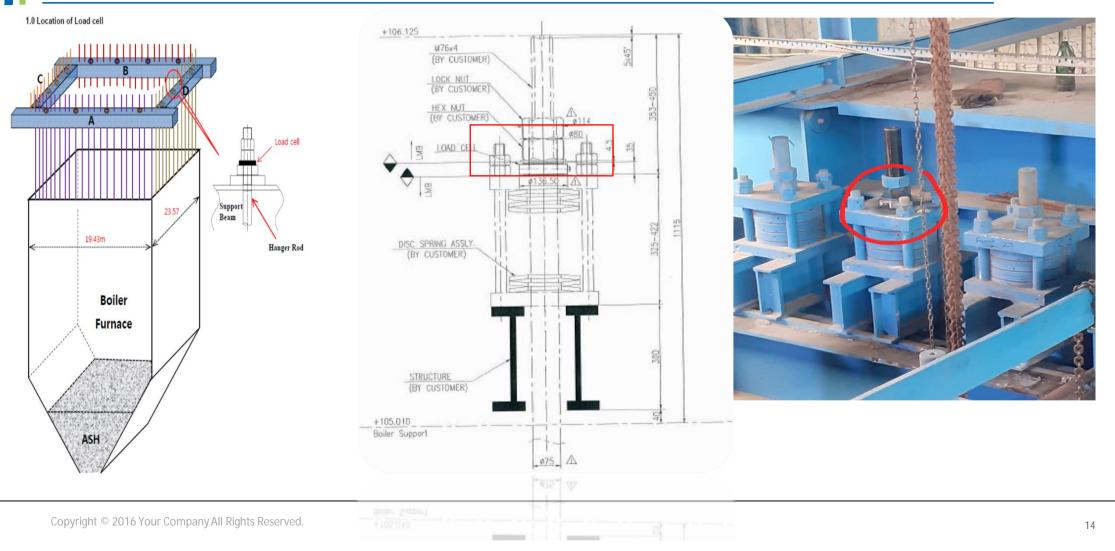

MEASUREMENT TECHNIQUES



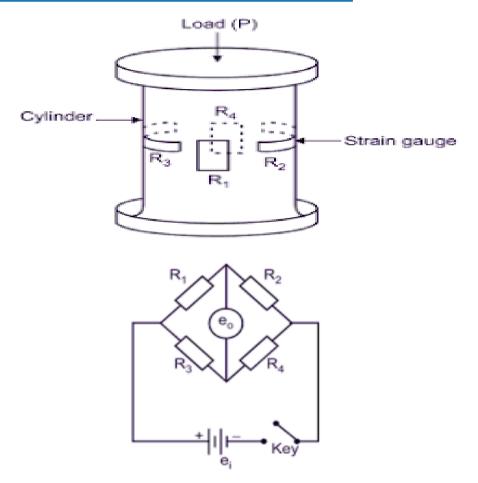
TREND OF BOILER EXPANSION WITH LOAD



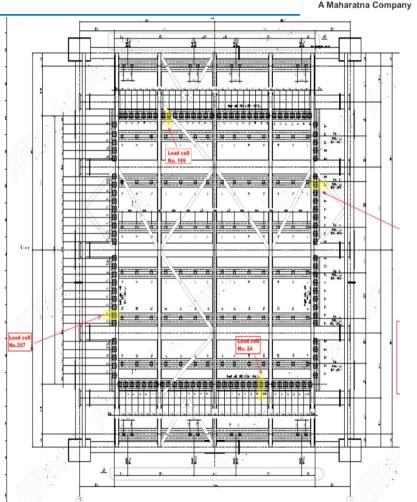
TREND OF BOILER EXPANSION WITH LOAD


BOILER EXPANION MODEL

BOILER LOAD CELL- INSTALLATION



Load Cell -Principle


- A load cell is a transducer that measures force, and outputs this force as an electrical signal.
- Strain gauge load cells usually feature four strain gauges in a Wheatstone bridge configuration, which is an electrical circuit that balances two legs of a bridge circuit. The force being measured deforms the strain gauge in this type of load cell, and the deformation is measured as change in electrical signal.

Boiler Ash Load Cell

- Boiler Load cells are provided for monitoring the ash accumulation in furnace hopper.
- Load cells are installed on each wall of the boiler at the specified load points
- The load cell signals are wired to the SG-DDCMIS to alert the operator in case of any ash accumulation in furnace beyond the permissible limit.
- There are two alarm set points configured for each load cell in case of High and High High levels of Ash accumulation through alarms

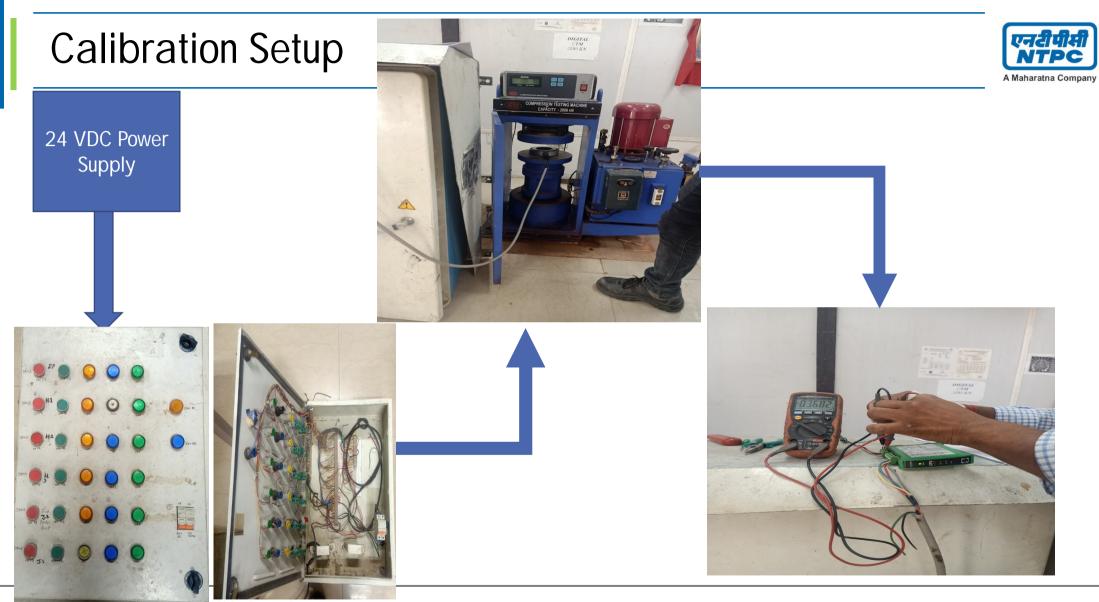
Location	KKS Code
Front Wall No. 24	10HBK73CW024
Rear Wall No. 109	10HBK74CW009
Left Wall No. 207	10HBK71CW007
Right Wall No. 322	10HBK72CW022

NTPC Installation

PLANT	NO. OF LOAD CELLS	MAKE OF BOILER
Darlipalli & Gadarwara (800MW)	12 Front & 14 Rear (26 Nos)	BHEL/GE/ALSTOM
Solapur & Meja (660MW)	1 in Each wall (4 Nos)	HITACHI (HPE)
Tanda & Khargone (660MW)	6 each in Front & Rear and 2 each in left & Right (16 Nos)	MHI-JAPAN / L&T
Kudgi & Lara (800MW)	4 on each wall (16 Nos)	Doosan
Mouda-II, Barh-II (660MW)	11 Front & 13 Rear (24 Nos)	BHEL/GE/ALSTOM

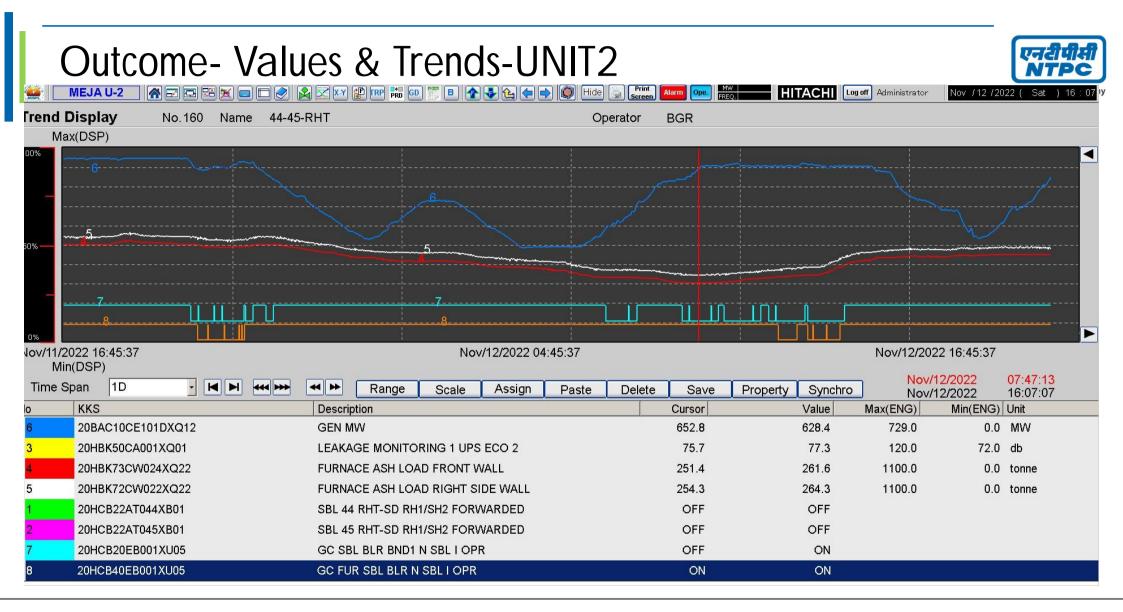
Total =446 Load Cell (260000*446= 11,59,60,000 /-)

Challenges in Commissioning

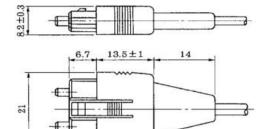

- Load cell cannot be taken out in Boiler Running condition.
- Healthiness of the Load cell cannot be checked, it can only be taken out during long shut down only.
- No procedure was provided by OEM/OES how to calibrate the load cell and transmitter.
- The values at different condition for all the four boiler load cells were not coming in DCS.
- There was no information regarding range of Load cell output and corresponding mA output range of transmitter.

Analysis & Resolution

- From the Model of Load Cell and Load Cell the Range of Load Cell is 100T or 1000KN approx.
- Transmitter to has be calibrated in the range of 0-1000KN +/-10%
- For testing of Load Cell, compression has to be applied on the Load Cell so, CTM machine was selected for compression
- 24VDC supply was generated from 230VAC through, 230VAC to 24VD convertor.



Outcome- Values & Trends-UNIT2


Copyright © 2016 Your Company All Rights Reserved.

CHALLENGE FOR CONDENSATE POLISHING UNIT (CPU)

Make/Type		ACTRONICS Co., Ltd. / TOCP200	
Core		2	
Storage Temperature		-40 to 70 degrees	
Operating Temperature		-20 to 70 degrees	
Tension	Between Fiber and Connector	19.6N	
Tension	Optical Fiber	98N	
Bending Radius		Min 40mm	
Transmission Loss		Typical: 220dB/km	
		Max: 240dB/km	
		(Conditions: $\lambda p = 650$ nm, Measured by fiber length 50m)	

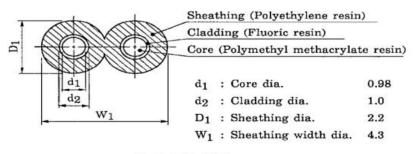


Fig. 3.2.8-3 Optical Fiber

Special Type of OFC: Core Diameter: 200 micron Cladding Diameter: 230micron Total loss < (-4Log L + 7)dB :L being length in Km.

MITIGATION OF CHALLENGE FOR CPU

- 1. Following options were suggested for mitigation of the challenge:
 - a. Upgradation of TOSMAP controllers with communication card having generic fibre Interface/ connectors (Approx. cost 23.3 million Rupees).
 - b. Replacement of Toshiba supplied TOSMAP DCS based CPP system with other make DDCMIS (Approx. cost 21.3 million Rupees).
 - c. Replacement of standalone CPP system with PLC system (9.1 million Rupees)
 - d. Replacement of OFC 4.6 Million Rupees for One Pair of Cable.
- 2. Local vendor were searched for supply of similar type of OFC with TOCP-200 Connector. After successful trial order was place for two set of cable with cost of 0.59 million rupees only, which is 1.3% of OEM price quoted for replacement of cable.
- 3. Provision of OWS in Common Control Room & PI data:
 - Provision of OWS in the CPU was provided to enable the CCR operator to monitor the condensate parameters.

CONCLUSION

- Installation of Boiler expansion sensor enabled the operator round the clock monitoring of the Boiler expansion.
- This enabled the operator to ensure free movement of the boiler from no-load to full load condition.
- Alarm at Low and High level of Boiler Expansion can be provided.
- 3-D expansion monitoring can be done after installation of sensor at various locations.
- Load cell data give live information of ash accumulation in Bottom Ash Hopper.
- Optimization of soot blowing can be done with the Load cell data.
- Provision of CPU connectivity through Remote desktop enable operator to take immediate action for any fault in CPU/CPP.
- Use of Indigenous OFC provided cost saving and ensured trouble free operation of CPU.

Thank You

Website: www.ntpc.co.in | Email: <u>ashishsahu@ntpc.co.in</u>

Follow us on: (f) /ntpc1

/ntpcltd1 /ntpclimited

