

R&M of Steam Turbines Improvements in Efficiency, Flexibility

and Reliability

Saurabh Verma Archan Gor Shekhar Thakur 13-14 Feb-24

Technology Needs

...by continuous improvement of economic value

Better Performance Less degradation

***** Flexibility

Less start-up time
Flexible start-up modes
Additional start-up features

Less forced outage Higher availability

Technology Partners

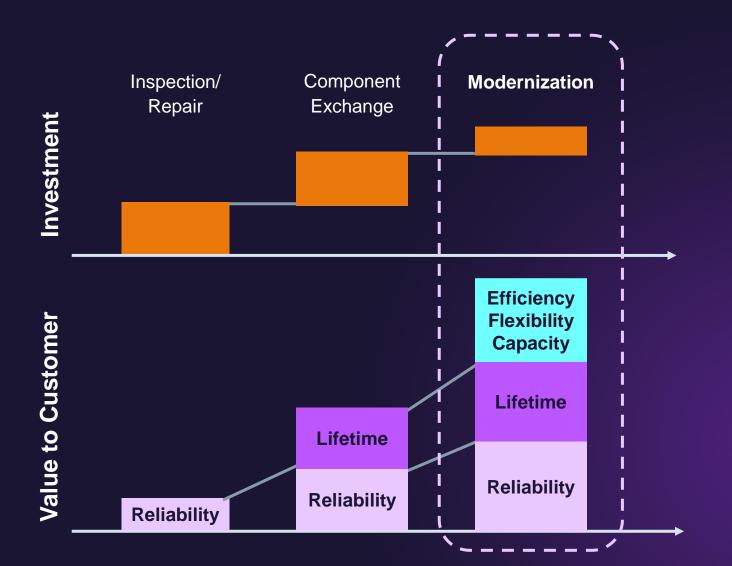
Drivers for R&M

Improved Power Plant Profitability

Lifetime Extension & Lower CO₂ Emissions

Outage Optimization

- Improved Heat Rate "Greener Energy: Less Coal"
- Higher efficiency
- Reduction of fuel costs
- Enhanced dispatch factor
- Safe operation for next 15-20 years
- Reduced maintenance costs
- Improvement of availability and reliability
- Advanced outage planning and on-site machining capabilities
- Outage Schedule Optimization



Modernization makes a significant contribution to economic value

Steam Turbine Modernization Economic Justification

Investment in modernization is in general higher than a standard revision

But

Modernization provides:

Efficiency increase
Flexibility Capabilities
Power increase
Lifetime extension
Minimized maintenance costs
Reduced spare part quantity
Latest level of technology

Therefore

Modernization provides major financial benefit!

Indian Fleet – Siemens Design

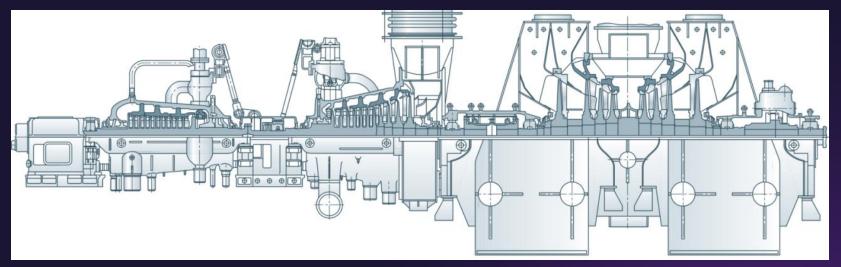
More than 2/3rd of fleet operating in India is based on Siemens Design Includes Siemens – KWU, Siemens – BHEL, SEC and Harbin

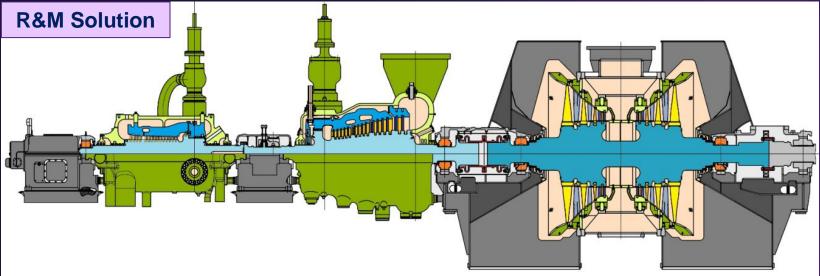
Frame		Turbine	
KWU 200 / 210 MW	НР	H30-25	Fleet Size – 98 Units
	IP	M30-20	
	LP	N30-2x5m²	
KWU 500 MW	НР	H30-63	Fleet Size – 40 Units
		H30-100	
	IP	M30-50	
		M30-63	
	LP	N30-2x10m ²	

SST-6000 Series (300 – 1200 MW) Design features for efficient and flexible application

HP & IP Turbine

High / Intermediate pressure turbine design features


No inner casing leakages due to Barrel-type design at super critical conditions
Optimum thermal loading
Short start-up times due to circular inner and outer casing
High efficiency and robustness



Double casing design, horizontal split Short start-up times due to circular inner and outer casings Optimized casing contours and wall thickness High efficiency and robustness

R&M— Scope of Work LMZ 210MW Units

SIEMENS Chergy

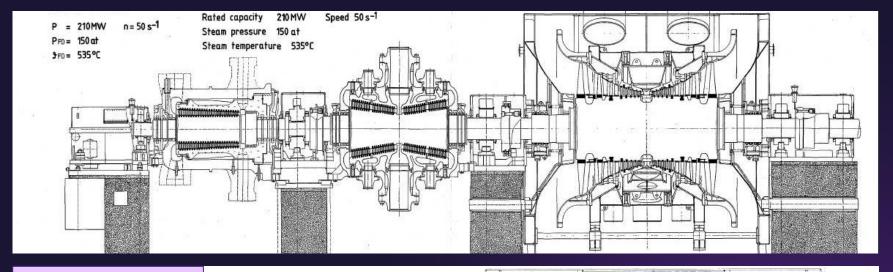
Scope of Work:

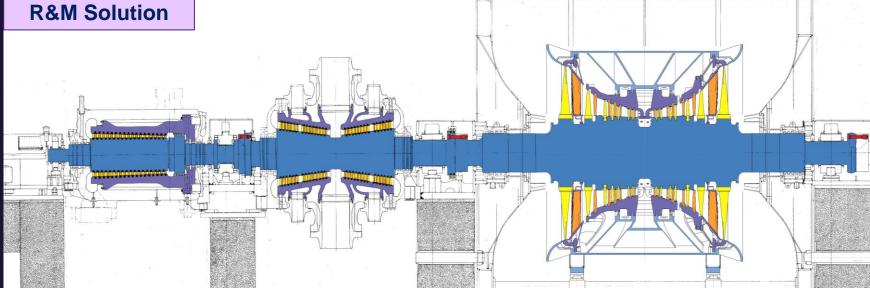
- HP, IP Full module and LP Inner module replacement
- HP, IP Valves, Bearings replacement
- Mechanical Auxiliary Systems
 Modernization
- MS, HRH, CRH Piping adaptations
- Aux. Systems Piping
- New Turbine Control system
- Electrical System Modernization

Implemented on:

GSECL Ukai U4 & Wanakbori U3

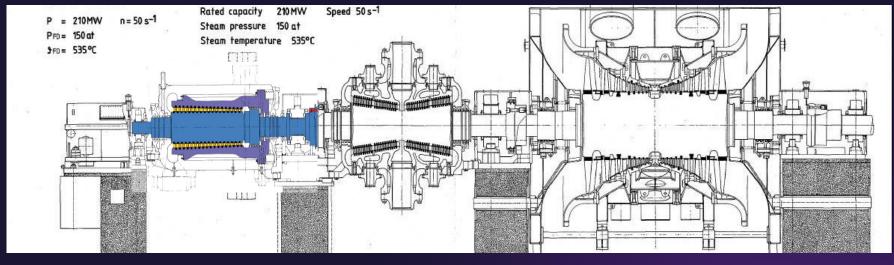
Under Execution:

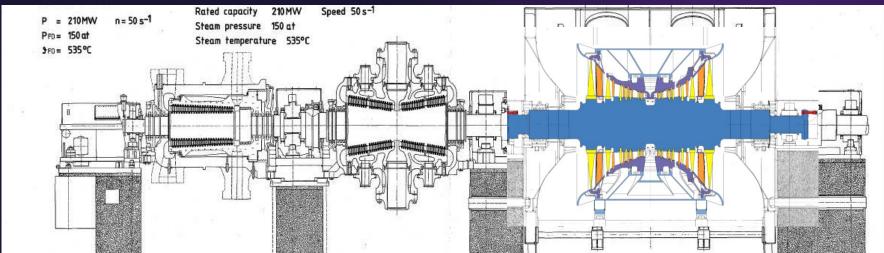

GSECL Ukai U3&5


On-going tenders:

NTPC Vindhyachal U1-3 GSECL Wanakbori U1&2

R&M – Scope of Work SIEMENS-KWU 210MW / 500MW Units

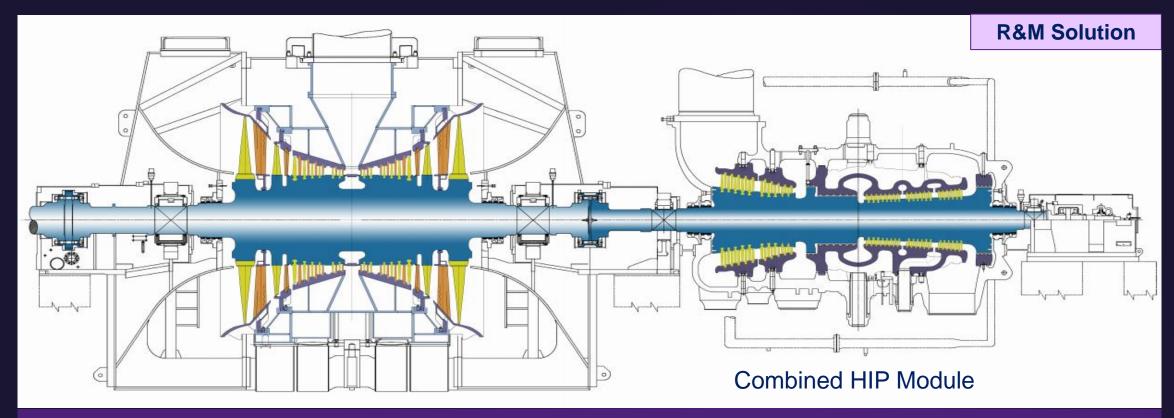

Scope of Work:


- HP, IP, LP Inner module replacement
- Retain HP, IP Valves, Bearings, Pedestals, etc.
- No mods & upgrades on Mechanical Auxiliary Systems
- No piping modification required
- Control system settings updates, if needed

Under Execution: KPCL Raichur U3

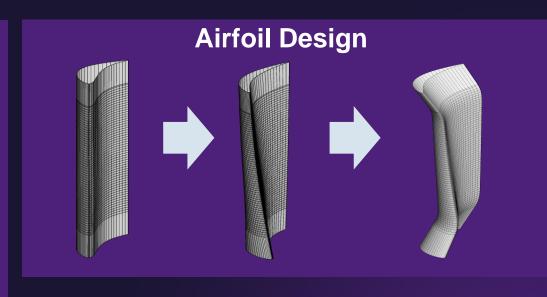
R&M – Scope of Work Module Level Upgrade - Option

SIEMENS COCCY



- Individual turbine modules upgrades for efficiency, life-time extension
- Less interfaces with existing components, so lesser risks
- Much shorter erection outage – reduced generation loss
- Quick turn-around of the projects – lesser tendering and execution time

M&U – Scope of Work Chinese OEM Make 135MW / 300MW



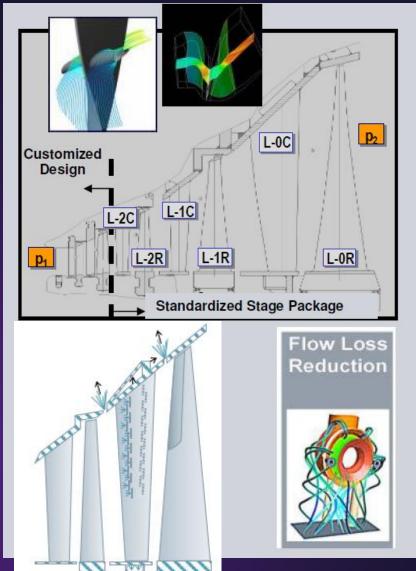
- HIP, LP Inner module replacement
- No scope related to HP, IP valves, bearings, pedestals, etc.
- Life extension and reliability improvement

HP/IP Blading Technology State-of-the-art 3DSTM Drum Stage Blading

Customer Benefits

- World-class performance
- Wide range of application
- Specific design for each application within short delivery times
- Long life & high reliability

LP Blading Technology


LP Blading Design Features

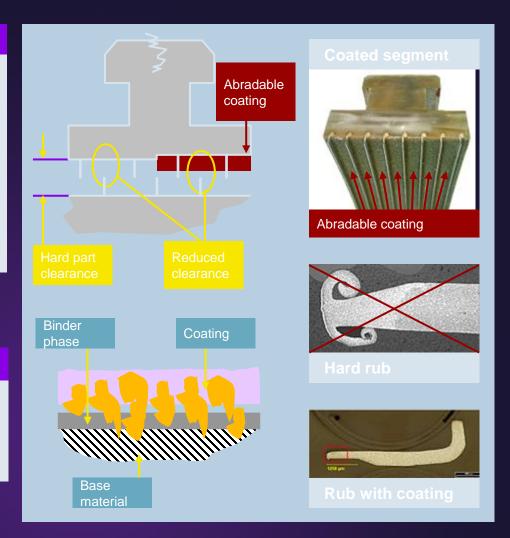
- State-of-the-art fully 3D design
- Optimized last stage blade size
- Optimized LP exhaust area
- New shrouded/free-standing Last Stage Blade with Transand Supersonic Tip Sections, 3D-Flow Design
- Stage De-wetting, Hardening of La-0, Suction Slot in Le-0

Customer benefits

- Improved blade efficiency by advanced 3D blade design
- Increased efficiency by shrouded rotating blades
- Reduced exhaust losses

SIEMENS COCCY

Sealing Features & Technologies Abradable coating sealing


SIEMENS Chergy

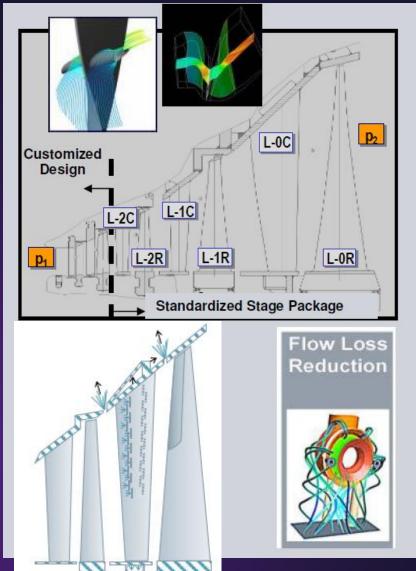
Design features

- Coating applied to standard seal segments (thickness ~0.6 mm)
- Reduced leakage flow due to reduced clearances (about 20% less)
- Fin cuts groove into coating without damage to fin or significant heating
- Suitable for large pressure drops
- Increased clearance between hard parts for additional operating safety

Customer benefits

- Increased efficiency and power output
- Increased operational safety
- Proven design

LP Blading Technology

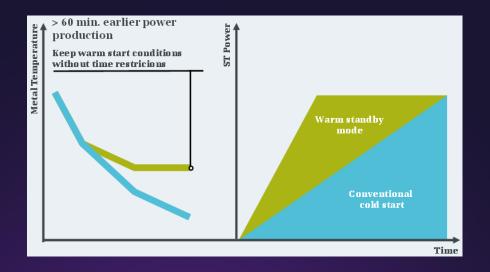

LP Blading Design Features

- State-of-the-art fully 3D design
- Optimized last stage blade size
- Optimized LP exhaust area
- New shrouded/free-standing Last Stage Blade with Transand Supersonic Tip Sections, 3D-Flow Design
- Stage De-wetting, Hardening of La-0, Suction Slot in Le-0

Customer benefits

- Improved blade efficiency by advanced 3D blade design
- Increased efficiency by shrouded rotating blades
- Reduced exhaust losses

SIEMENS COCCY



Reduced Startup-times: Heating blankets ST Warm Standby Operation to prepare for fast start-up

Technology

- Electrical heating system for ST in turning gear
- Maintains rotor shaft temperature at warm startup conditions

Benefit

- Significant reduction of startup time... > 60 min.
- Reduction of EOH consumption per start
- Significant oil savings in startup and cost
- Less energy is bypassed to condenser
 - Reduced costs per start up

Electric heating coils to keep HP/ IP Turbine casing and shaft in warm start conditions

Part Load Efficiency: Turbine hardware upgrade HP + LP Turbine Replacement

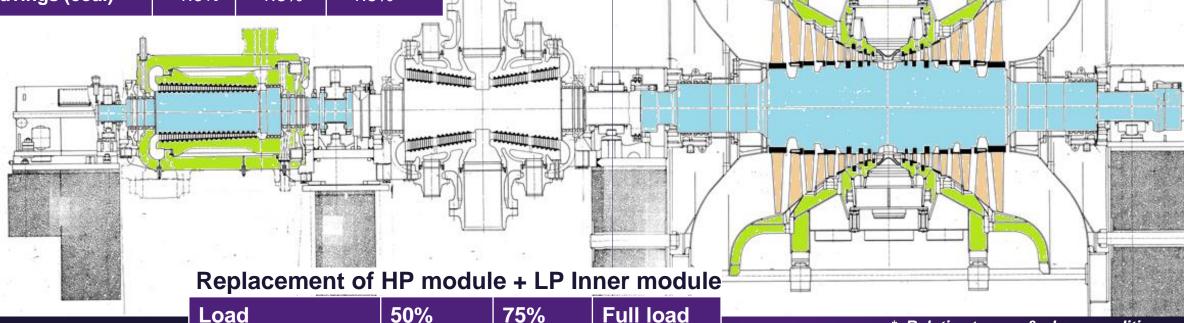
≈ 1.5%

≈ 2.7%

Replacement of LP Inner module

SIEMENS Charay

Load	50%	75%	Full load	
Savings (coal) *	≈ 0.6%	≈ 0.6%	≈ 0.7%	
Savings (coal) **	≈ 1.3%	≈ 1.3%	≈ 1.5%	


Savings (coal) *

Savings (coal) **

 Load
 50%
 75%
 Full load

 Savings (coal) **
 ≈ 1.0%
 ≈ 1.0%
 ≈ 1.1 %

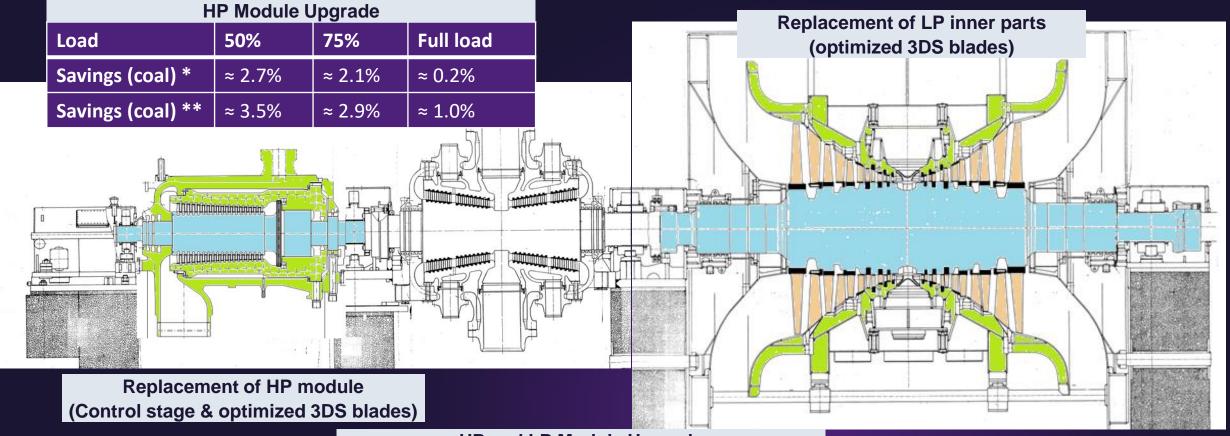
 Savings (coal) **
 ≈ 1.2%
 ≈ 1.3%

≈ 1.6%

≈ 2.7%

≈ 1.8 %

≈ 2.9%


New 3D Blades

^{*} Relative to new & clean conditions

^{**} Relative to aged condition (both in fixed pressure operation)

Part Load Efficiency: Turbine hardware upgrade HP Turbine with control stage + LP Turbine

HP and LP Module Upgrade						
Load	50%	75%	Full load			
Savings (coal) *	≈ 2.7%	≈ 3.2%	≈ 1.3%			
Savings (coal) **	≈ 4.7%	≈ 4.1%	≈ 2.2%			

^{*} Relative to new&clean conditions

^{**} Relative to aged condition (both in fixed pressure operation)

SIEMENS Chergy

Thank You!

Shekhar Thakur

Chief Manager - Sales Portfolio Consulting Siemens India, Service and Digital Phone: +91 9899696090 shekhar.thakur@siemens.com siemens-energy.com

Saurabh Verma

Manager – Performance Engineering Siemens India, Service and Digital Phone: +91 7567886993 verma.saurabh@siemens.com siemens-energy.com

Archan Gor

Manager – Performance Engineering Siemens India, Service and Digital Phone: +91 8128658513 archan.gor@siemens.com

siemens-energy.com

