

NETRA

Bioenergy with carbon capture, utilization, and storage (BECCUS): Induction to Hybrid Model (BECCUS) for sustainable Power generation from Coal.

Presentation By: Sudarshan Singh, Prabkaran.S, Sahil Chopra-NTPC NETRA

Outline of the presentation

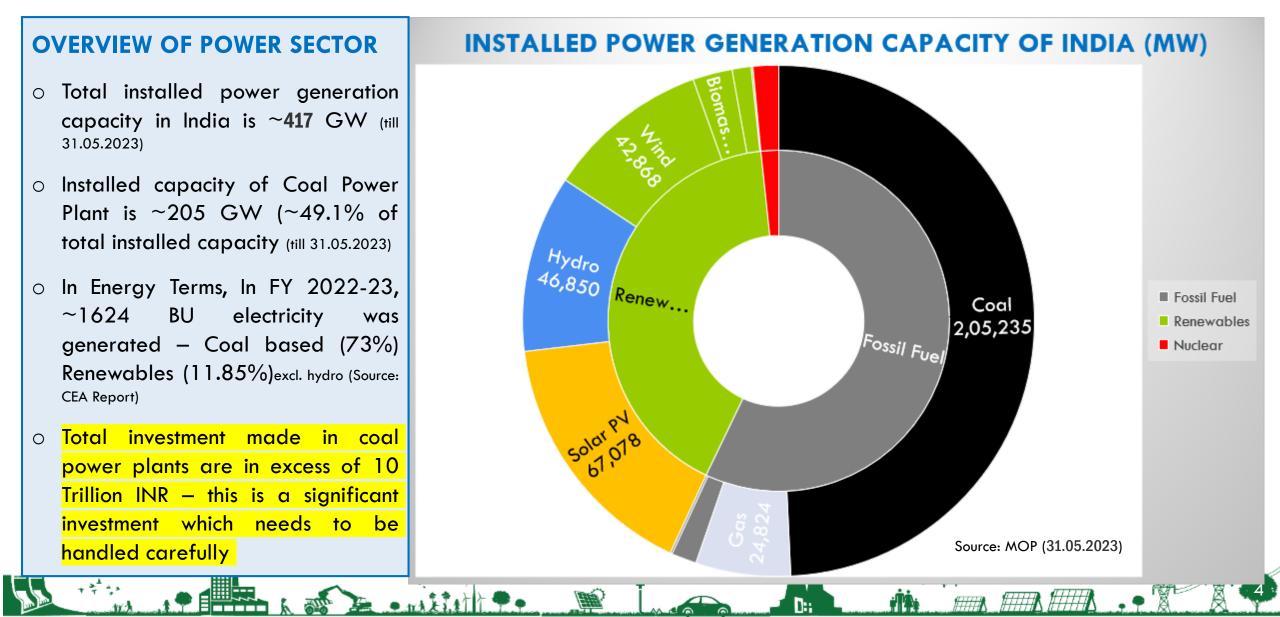
- Literature Research & Available know-how
- Low Carbon Transition Indian & NTPC Perspective
- NTPC Initiatives CCUS & Biomass Cofiring
- BECCUS as Hybrid Model
- Roadmap-BECCUS as Hybrid Model
- CO2 Utilization Potential Avenues
- Recommendations & Way forward



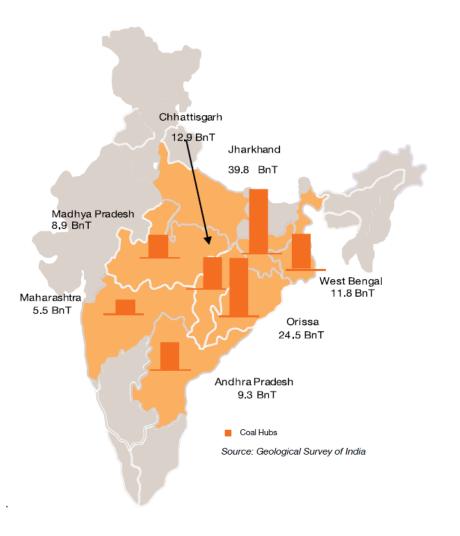
Literature Research

&

Available know-how

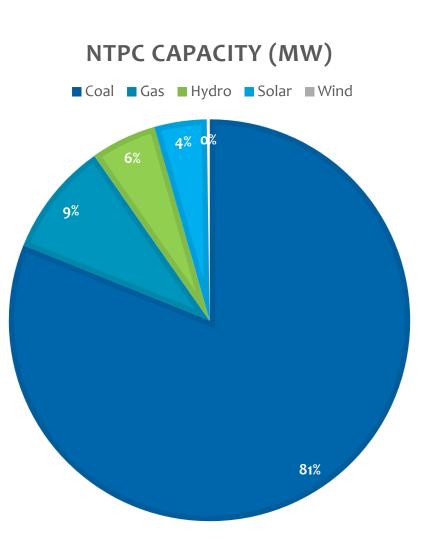


Low Carbon Transition - Indian Perspective



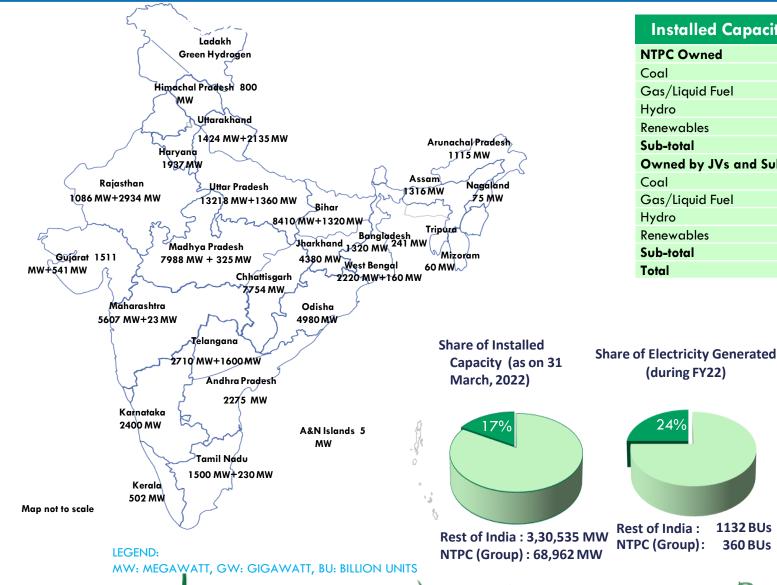
COAL RESERVE

- India has 149 Billion Tons of 'Proven Coal Reserve' & 319 Billion Tons of 'Total Coal Reserve' (GOI-Ministry of Coal)
- Bulk of Indian coal is of 'Non-coking' variant which can only be used in Power Plant Installed capacity of Coal Power Plant (129 out of 149 Billion Tons i.e ~87% & 283 out of 319 Billion Tons i.e ~89%) (GOI-Ministry of Coal)


ECONOMY & EMPLOYMENT CONNECT

- Economy of few Indian States are critically dependent on coal mining. State-wise, share of coal in mining sector are: (i) Jharkhand: 91%, (ii) MP: 73%, (iii) Chhattisgarh: 66%, (iv) Odisha: 38% (TERI: Coal Transition in India)
- It generates large quantum of employment estimated 355,000 to 500,000 Nos – across various skillset (TERI: Coal Transition in India)

NTPC CO₂ Emission


- Total Installed Coal Fired Power Station 57494 MW around 81% of Total Business Portfolio in Power Generation.
- Total CO2 emission with 100% PLF is around 637493 TPD considering 11% CO2 in Flue gas.
- Per Year Total CO2 Emission from said capacity is around 0.23 Gigaton
- For next 50 years Total CO2 Emission with said same Capacity shall be around 11.6 Giga Ton
- The Emission shall increase with growing energy demand if more Coal fired plants installed.
- Energy Security with Grid Stability will be key factor in continuous running of coal fired station inn coming Future or during transition period

NTPC's Unparalleled Presence across the

Installed Capacity as on 5th Sep 2022 : 70,064 MW

360 BUs

D::

NTPC Owned	Stations	in MW	Mix %
Coal	24	48,720	69.53%
Gas/Liquid Fuel	7	4,017	5.73%
Hydro	1	800	1.14%
Renewables	23	2162	3.08%
Sub-total	52	55,699	79.50 %
Owned by JVs and Subs			
Coal	9	8,754	12.49%
Gas/Liquid Fuel	4	2,494	3.56%
Hydro	8	2,925	4.17%
Renewables	5	192	0.27%
Sub-total	26	14,365	20.50 %
Total	78	70,064	100.00%

NTPC RE @ PRESENT	GW
Installed	2.02
Under Construction	4.09
Near Construction (Bids won)	2.21
Under tendering (Others)	3.22
Total	11.54

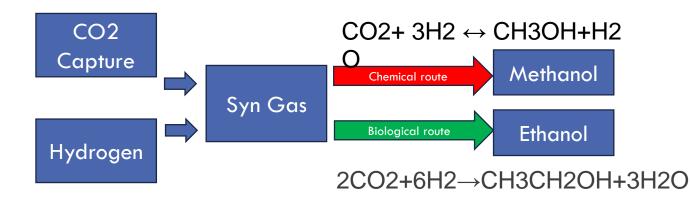
60 GW+

Renewable

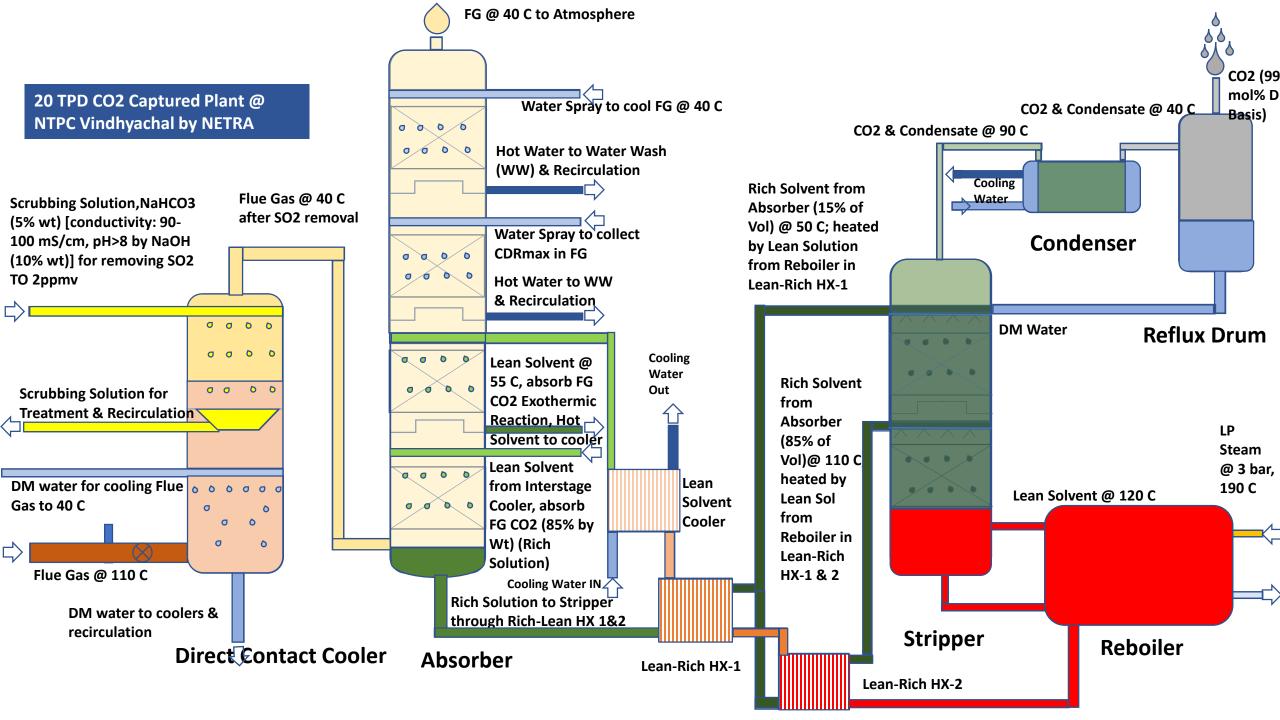
capacity by 2032

14th

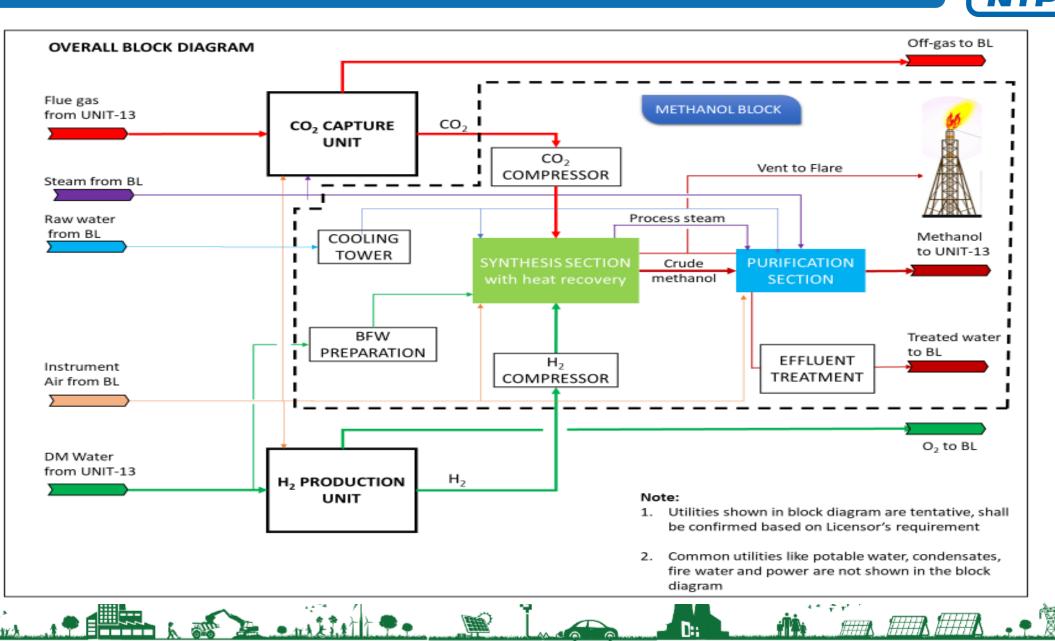
NTPC Initiatives CCUS & Biomass-Cofiring

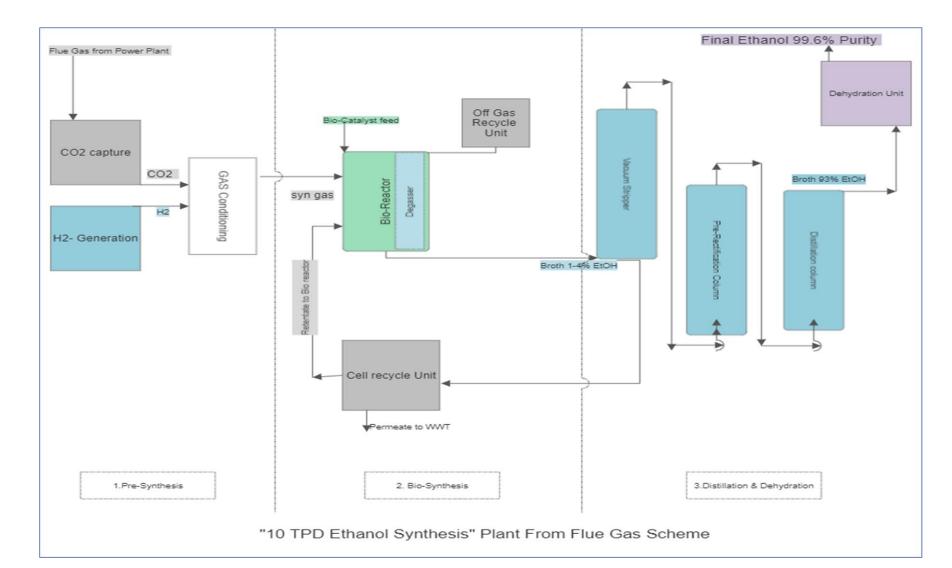


NTPC's Initiative-CCU


Design, Engineering & Development of 10TPD CO₂ to Methanol Plant

Upon setup, this shall be the first plant, globally, where CO₂ is stripped from waste thermal power plant flue gas and then converted to Methanol
 Conceptualization of CO2 to Ethanol: 10 TPD Ethanol generation through Bio-Catalyst based reactor under award Stage.




10 TPD CO2 to Methanol (CTM) Plant at NTPC Vindhyachal

एनटीपीसी

Projected CO₂ to Ethanol Block

D::

Niti Aayog report recommendations for CCUS

Comparison of Carbon Credits/Incentives & Carbon Tax Based Policy

Policy type	Carbon credits based policy	Carbon tax based policy	Element		Details
Key aspects of the Policy	 Incentivizes CCUS adoption & drives down the cost of capture Establishes markets for carbon-based products Offsets carbon capture costs through financial instruments and future taxes & growth 	 May not directly incentivize CCUS CCUS not established in India - acceptability and affordability of carbon tax is uncertain Eventually required in the long term Potential near term problems: 	mer	Policy path	 In the and pr Over t as to e The pr
	 Most suitable for decarbonization of existing industrial asset base 	 May lead to industrial migration and loss of competitiveness Effectiveness questionable in the near term 	G	Hub & cluster business model	CCUS - Region - The ro
Trading scheme	Tax credit equity trading - US 450 tax credits	Carbon emissions trading - EU ETS			needs
Application examples	 Netherlands' SDE++ scheme UK power sector Contracts-for-Difference (CfD) 	 China ETS Norway CO₂ tax Canada Output-Based 	B	Low carbon products	 Prefer carbor Incent
	 UK CCUS Infrastructure fund EU Innovation fund 	Pricing System (OBPS) - California cap-and-trade		Environmental and social justice	 Distrit affect
CCUS project examples	 Petra Nova CCUS (USA) Gorgon LNG (Australia) 	 Sleipner (Norway) Snøhvit (Norway) 			 Protection regula
Carbon subsidy/tax examples	 US 45Q tax credit: up to 60 USD/t CO₂ for EOR & conv. up to 85 USD/t CO₂ for storage up to 180 USD/t CO₂ for DAC 	 EU ETS: 34 Eur/t CO₂ Canada ETS: 2021: 30 USD/t CO₂ 2030: 170 USD/t CO₂ 	÷	Accounting and regulatory framework	 Regula Adopt Scope
Suitability	 Australia: AUD 60 MM\$ for Gorgon LNG project Canada: CAD 865 MM\$ for Quest Developing economy like India 	 Norway: 2021: 590 NOK (~70 USD) /t CO₂ 2030: 2000 NOK (~237 USD)/t CO₂ Developed economies like EU 		Risk mitigation	 Limitin CCUS Monito for ris

Key Elements of a CCUS Policy Framework for India

	Details
icy path	 In the near term, CCUS policy should be carbon credits or incentives based, to seed and promote the CCUS sector in India through tax and cash credits
	 Over time (probably beyond 2050), the policy should transition to carbon taxes, so as to enable reaching India's net zero goals by 2070
	 The policy should establish early stage financing and funding mechanisms for CCUS projects
b & cluster	- Regional hub & cluster models need to be established to drive economies of scale
iness model	 The role of emitters, aggregators, hub operator, disposers and conversion agents needs to be defined
v carbon products	 Preferential procurement in Government tenders for low carbon or carbon abated products
	- Incentives to foster innovation for low carbon products through schemes like PLI
vironmental and ial justice	 Distribution of benefits of economic value added created to communities most affected by environmental and climate change
	 Protection of communities and jobs, especially in sectors affected by clean energy regulations
counting and	- Regulated emission levels and allowances for different sector
ulatory framework	 Adoption of Life Cycle Analysis (LCA) framework to take into account Scope 2 and Scope 3 emissions and drive effective carbon abatement
k mitigation	 Limiting the CO₂ liability and ownership of participants across the CCUS value chain
	 Monitoring, Verification and Accounting (MVA) framework and monitoring for risk management

Worldwide CCUS Projects

Country	Project	Start Y ear	CO ₂ source	CO ₂ capture capacity (mtpa)	CO ₂ disposition
USA/Canada	Great Plains Synfuels (Weyburn/Midale)	2000	Synthetic natural gas	3.0	EOR
USA	Core Energy CO ₂ -EOR	2003	Natural gas processing	0.35	EOR
Norway	Snohvit CO ₂ storage project	2008	Natural gas processing	0.7	Storage
USA	Arkalan CO ₂ Compression Facility	2009	Ethanol production	0.29	EOR
USA	Century plant	2010	Natural gas processing	8.4	EOR
Brazil	Petrobras Santos Basin pre-salt oilfield CCS	2011	Natural gas processing	7.0	EOR
USA	Bonanza Bioenergy CCUS EOR	2012	Ethanol Production	0.1	EOR
USA	Air Products steam methane reformer	2013	Hydrogen production	1.0	EOR
USA	Lost Cabin Gas Plant	2013	Natural gas processing	0.9	EOR
USA	Coffeyville Gasification	2013	Fertilizer production	1.0	EOR
USA	PCS Nitrogen	2013	Fertilizer production	0.3	EOR
Canada	Boundary Dam CCS	2014	Power generation (coal)	1.0	Various
China	Karamay Dunhua Oil Technology CCUS EOR	2015	Methanol production	0.1	EOR
Saudi Arabia	Uthmaniyah CO ₂ -EOR demonstration	2015	Natural gas processing	0.8	EOR
Canada	Quest	2015	Hydrogen production	1.3	Storage
UAE	Abu Dhabi CCS	2016	Iron and steel prod.	0.8	EOR
USA	Petra Nova*	2017	Power generation (coal)	1.4	EOR
USA	Illinois Industrial	2017	Ethanol production	1.0	Storage
China	Jilin oilfield _{CO2-} EOR	2018	Natural gas processing	0.6	EOR
Australia	Gorgon Carbon Dioxide Injection	2019	Natural gas processing	3.4 - 4.0	Storage
Canada	Alberta Carbon Trunk Line (ACTL) with Agrium CO_2 stream	2020	Fertilizer production	0.3 - 0.6	EOR
Canada	ACTL with North West Sturgeon Refinery CO ₂ stream	2020	Hydrogen production	1.2 - 1.4	EOR
Iceland	ORCA	2021	Direct Air Capture	0.004	Storage
Canada	Glacier Gas Plant MCCS	2022	Natural gas processing	0.2	Storage
China	SINOPEC Qilu-Shengli CCUS	2022	Chemical production	1	EOR
USA	Red Trail Energy CCS	2022	Ethanol production	0.18	Storage

A Maharatna Company

Stubble Burning in open fields

Paddy travel Paddy Straw Paddy Straw Paddy Straw Paddy Straw Paddy Straw Paddy Straw Paddy Straw

Characterization of Raw Biomass for 10% Firing (2017)

- VM evolution at 190-200°C- Limiting mill operation
- Softness and hygroscopic nature- Limiting mill grinding capability
- Alkali and Chlorine content: Slagging/Clinkering
- In view of above trial carried out with 10% co-firing with modified handling and mill operating procedure

Characterization of torrefied biomass (Mar-July 2021)

- Hydrophobic-Handling/Conveying capability similar to coal
- Enhanced mill Grindability-Increased % of co-firing
- Increased VM release temperature-Improved Mill Temperature
- Indices predicts minimum slagging till 20-25% co-firing
- For presently fired sample of Biomass (April 2021) similar assessment as above
- Further samples are being characterized for consistency of results

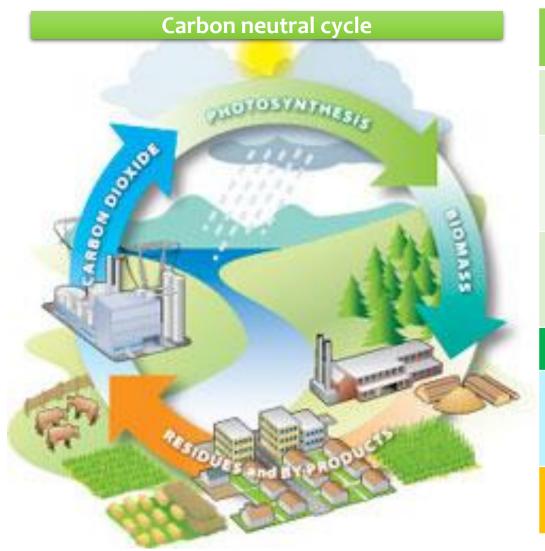
Biomass Cofiring

Parameter	Coal	Paddy straw
Carbon content	34-35%	14.31%
Volatile content	20-21%	63.50%
Ash content	38%	13.3%
Moisture	6%	8.8%
GCV	3500 Kcal/Kg	3650 Kcal/kg
Alkali content (K, Na)	-	6-8%
Chlorine content	0.05-0.08%	0.8-1.5%
Density	833 kg/m3	700 Kg/m ³
Ignition temperature	454 C	240 C
Grind ability index	70-80	
Particle type	Brittle	Fibrous
Ash Fusion Temp.	1150 C	850-900 C
Ash resistivity	moderate	High

NETRO

Effect of co-firing on CO2, SOx, NOx and Particulate emission

CO2	SOx	NOX	Particulate
Proximate analysis of Rice straw briquettes suggests that it has calorific value very near to that of bituminous coal. So,	Coal blend principally affecting SO2 emissions are: The total sulphur content (represents maximum	Can reduce NOx through lower N content (depends on biomass) and higher volatiles release in the fuel rich zone of the flame.	 Chemical and physical properties of fly ash particulates from biomass combustion are different from those of coal
its 10% co-firing would cut down CO2 emission by approx. 10%.	amount of sulphur oxides that could be formed)	Also gives lower flame temperature, reducing thermal Nox.	 Can give higher release of trace metals
	 The ash composition (since typically 5-10% of the SO2 is generally captured by alkalis in the coal ash) Biomass generally has much lower contents of sulphur, 	But may affect the SCR – larger quantities of alkalis such as K, Na, Ca and phosphorus may blind or poison the catalyst, leading to higher NOx emissions	 Reduces fly ash loading Can increase overall collection efficiency of ESPs due to larger particulates and ease of agglomeration
	together with higher concentrations of alkalis in its ash, so SO2 emissions are generally considerably reduced when cofiring.	and potentially high ammonia slip > Can need earlier catalyst change	 But on higher co-firing ratio it may instead reduce collection efficiency, due to high resistivity of fly ash, and increase PM2.5 emissions


Strategic advantages of Biomass co-firing

- Biomass co-firing has been recognised by UNFCCC as a technology to mitigate GHG emissions.
- India has large coal-based capacity which can be utilized to generate renewable energy.
- RE generation through co-firing does not require compensatory cycling of thermal plants, thus increases their life and incurs no cycling cost as well as no indirect cost of integration.
- Cost competitive with solar and wind if indirect cost of integration is also taken into account
- Having a world's largest area under cultivation, India has vast unutilized biomass resource.
- Unlike solar and wind, it may meet peak demand
- 30000 MW potential of biomass power = 125000 MW Solar capacity (CUF-15-20 %)
- Thus, to meet NDC target of India aimed at reducing carbon footprint (of GDP of 2005 level) by 35%, biomass co-firing may prove strategic alternative to reduce carbon footprint without need of compensatory cycling of coal based plants.
- Older plants providing cheaper power to consumer may not be required to be phased out by reducing its carbon foot through biomass co-firing and with appropriate tariff policy for same, creating a win-win situation for all.

Biomass pellets : A carbon neutral fuel

Activity	Fuel consumption	CO2 emission per unit	Total CO2 emission (kg)
Diesel consumption in collection and storage	3 liter/ton	2.86 kg/liter	8
Electricity consumption for pelletization	25-40 unit/ton	1.68 kg/unit	42-67.5
Diesel Consumption in transport of pellets up to 150-300 KM	5-10 liter/ ton	2.86 kg/liter	13.4-26.8
Total			63-102
Co2 emission reduction from per ton of Biomass Co-firing	1 ton of pellet	1283 kg/ton	1283
Net CO ₂ emission reduction per ton			1181

SWOT Analysis

- 1. Decades of expertise
- 2. Plant production systems & procedures
- 3. Workplace culture and personnel practice.
- 4. New Initiatives Acceptance
- 5. Project Management

6. Dedicated R&D

1. Huge chemical market opportunities in Green Chemicals (Methanol , Ethanol , Urea etc.)

2. Huge futuristic potential of Green H2 - supportive compound in CCUS

3. Longer Period Run of Installed Plants in sustainable manner by meeting emission norms.

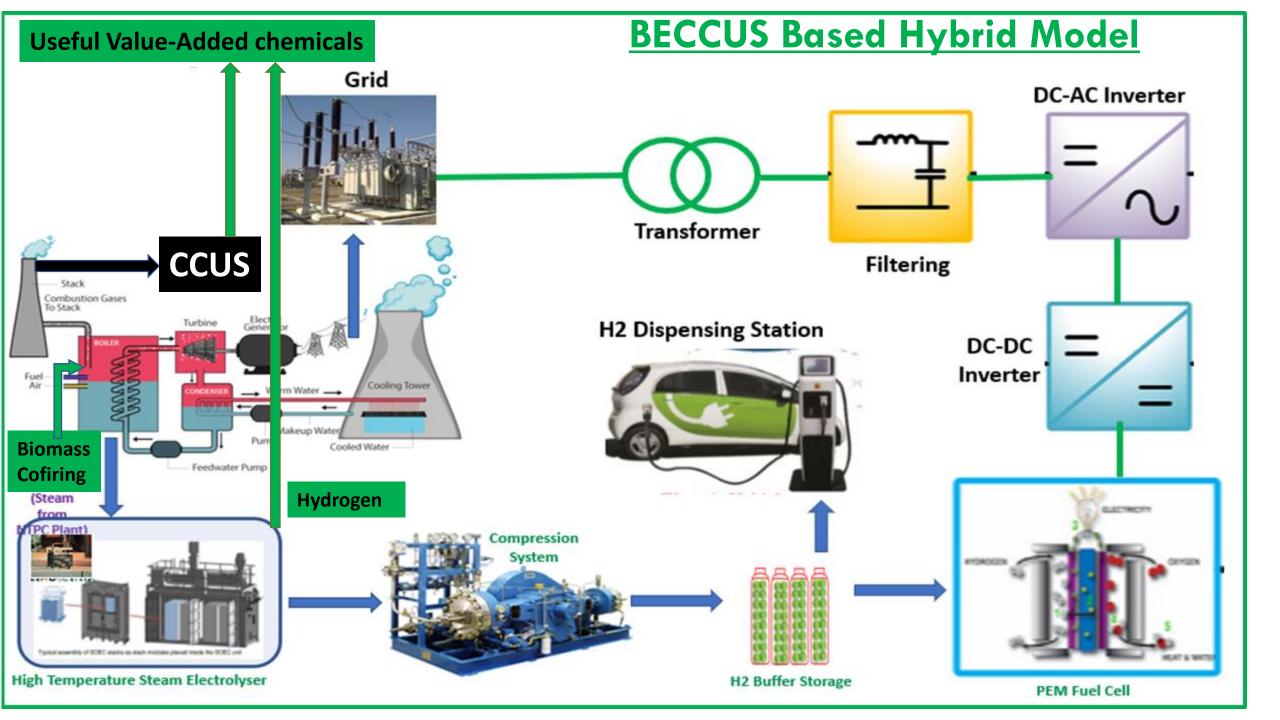
- 1. Thermal obsolete, coal shortage, Ash disposal problem, water shortage (ZLD)
- 2. Regulated business
- 3. Environment norms, NZE(net zero emission), carbon footprint.
- 4. Weak Biomass supply chain, CCUS technology

1. Handling public money- Vendorsequal opportunities, L1 model follow tendering

2. Unit economics of CCU based product market.

3. Additional financial burden through BECCUS

Proposed Solution BECCUS as Hybrid Model



Case study on Analysis of Hybrid Model:

Refer below table as input data to CCU shall be used from Power plant.

Description	Unit	Input Data
Plant Capacity	MW	500
No. of Unit	No.	2
Coal Consumption for 500 MW	TPH	360
Coal Consumption for Two Unit	TPD	17280
20% Pellet Biomass Blend	TPD	3456
flue gas from single Unit	TPH	2100
Total flue gas	TPH	4200
Total Flue gas	TPD	100800
CO ₂ % in Flue gas	%	12
Total CO ₂ In Flue Gas	TPD	12096
CCU Plant Efficiency	%	85
Capturable CO ₂	TPD	10282

With reference to above input which shall be used in hybrid model for reducing footprints refer below table thru BECCUS

Hybrid Model

۰÷

A.W.

22

· P

Supporting Technology/Process in Reducing CO2 footprints	% Contribution in reducing GHG Emission (CO2)	CO2 (TPD) Reduced from Emission	Out Put Products (in TPD) from CCU
Methanol	10	1028	734
Ethanol	10	1028	514
Total CCU Compounds	20	2056	
CO2 Storage	5	514	
Total CO2 captured in CCUS	25	2570	
Agri, Biomass Pellet Co-firing	20	2419	20% of pellet shall be blend with Coal which accounts reduction in emissions 20% against Coal
Total		4990	

.....

A ST . Milit .

\$.

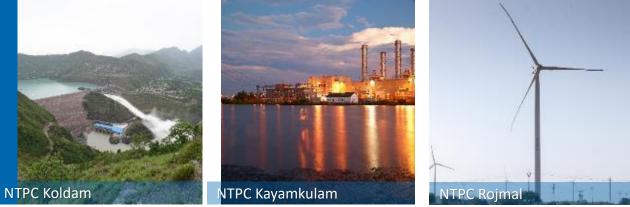
D:;

1. 44 \$ T

A.

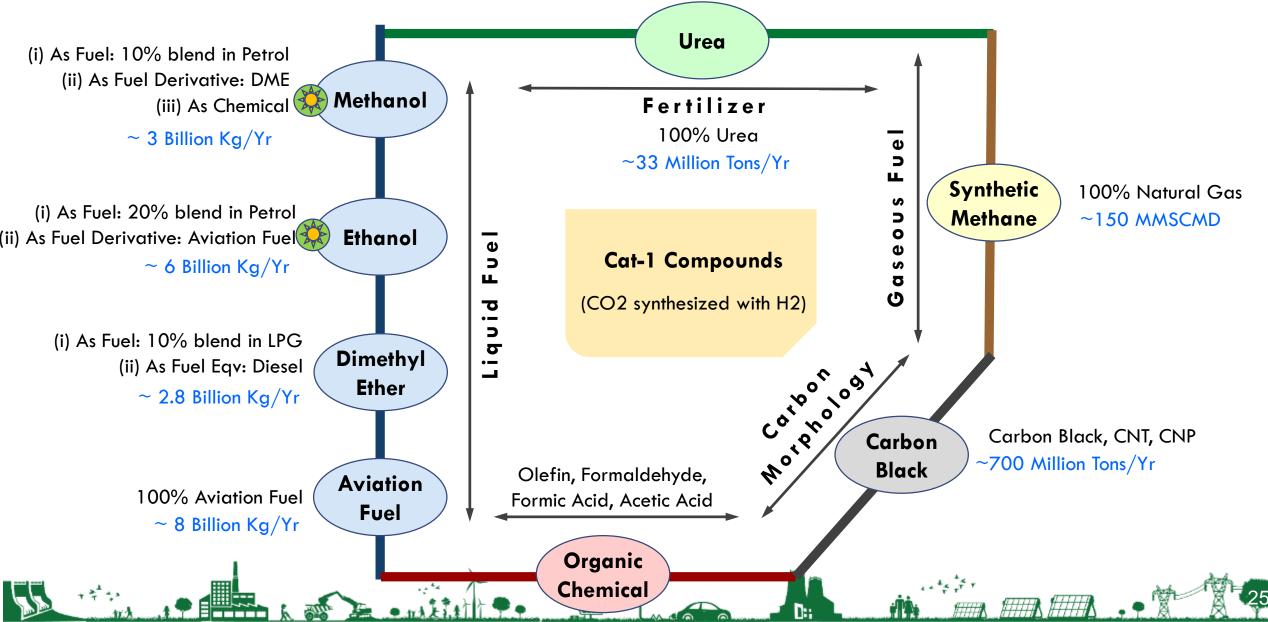
Analysis of BECCUS Based Hybrid Plant

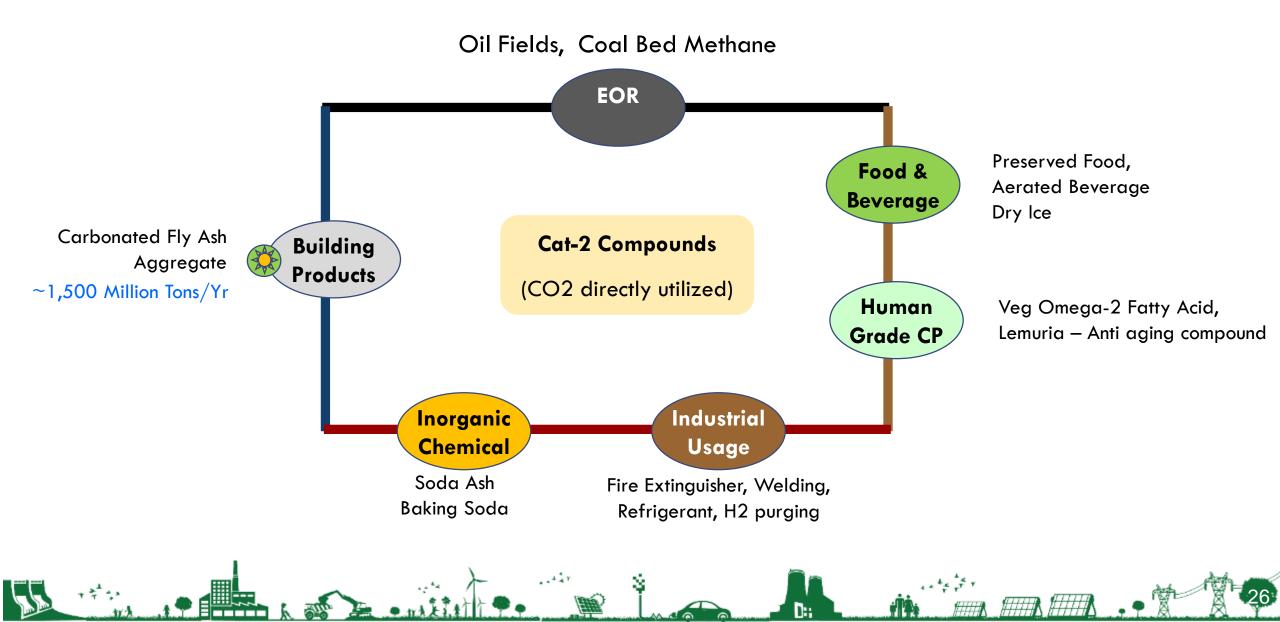
- With 45% of Hybrid Power Plant Total CO₂ Emission reduced to 41%. The difference is due to efficiency of CO₂ capture Plant.
- •1248 TPD (734 Methanol+514 Ethanol) as CCU Low carbon products and diversifying business portfolio thru meeting the futuristic chemical demand
- Roadmap towards Net Zero Emission with coal fired plants in operation.
- Meeting the energy security, employment and economy of states and country based on Coal.
- Circular Economy and Usage of wastage in from of pellets.


k and entitle

• Maintaining the Grid Stability and it helps in providing uninterrupted power supply irrespective of natural variables (like in renewables)

Roadmap-BECCUS as Hybrid Model




BECCUS: Potential Avenues

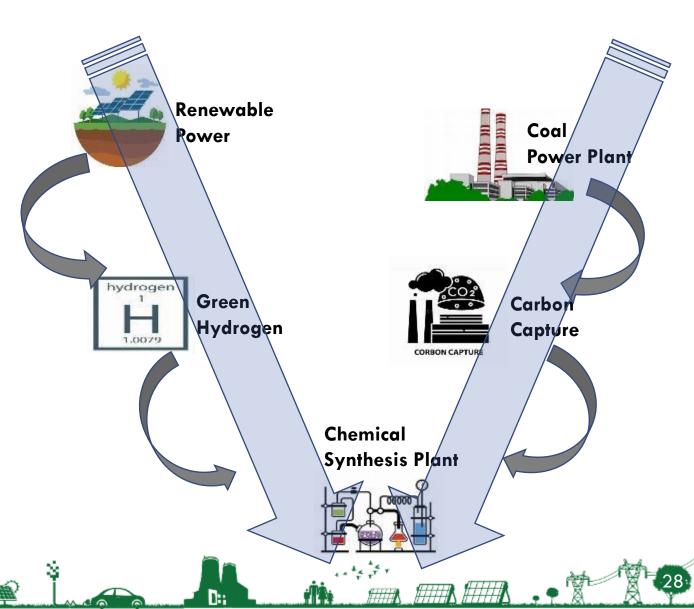
BECCUS: Potential Avenues

Roadmap - BECCUS as Hybrid Model

- With above methods used in hybrid Model shows that the Co-firing of Pellet, Agri and biomass has led to reduce the GHG emission when blended with coal. The rest of coal which are responsible for emission partially CO₂ from flue gas when captured can be utilized to produce hydrocarbons to meet the market demands.
- The challenges in this Models are like collection of Agri ,biomass at large scale in order to meet the 20% blending with coal. In CCU the competitive pricing of products from CO₂ utilization is one of the major factor due to nascent stage technologies and cheap conventional available process.
- The government shall require to frame policy for consumption of these compounds before it reaches to a competitive level.
- This model helps us to utilize our natural reserve to some extent ensuring our energy security, grid stability and uninterrupted power supply along with narrowing down the gap in meeting Net Zero compliances.

Roadmap - BECCUS as Hybrid Model

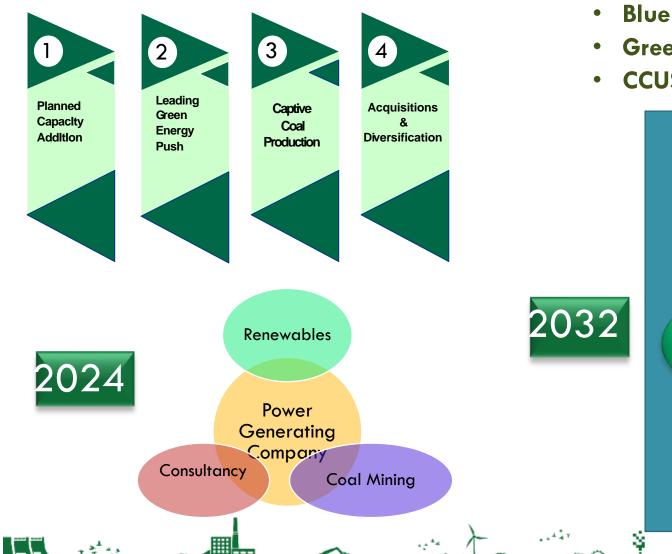
BECCUS Model: Low carbon transition with sustainable Power


Hybrid BECCUS Model in based on **inter-linking** (i) Renewables, (ii) Green Hydrogen & (iii) Carbon Capture and Utilization iv) Biomass

KEY BENEFITS:

- 'Low Carbon Intensity' Coal Power Plants- A step towards Net Zero CO2 Emissions
- Maintain the (i) Employment in Coal Sector, (ii) Economy of coal rich states, (iii) Investment in Coal Power Plants,
- CCU based compound Industries

CONTRIBUTE TOWARDS COP-26 COMMITMENTS:


(i) 500 GW Non-fossil capacity; (ii) 50% energy from RE; (iii) Carbon intensity < 45%; (iv) 1 billion tons emissions reduction; (v) Net-zero emissions by 2070.

Leading Indian Energy Company - Spearheading Energy Transition in Future

Key Growth Pointers

- Firm Action Plan to comply with New Environment Norms.
- Blue Sky Initiatives of NTPC
- Green hydrogen initiatives.
- CCUS plants in India

THANK YOU

