

Power Sector Scenario till 2032 and Flexibilisation Requirements from Coal based Thermal Power Stations: NTPC Approach for navigating the challenges for Flexible Operation

All India vs NTPC Performance

All India Demand Scenario and Flexibilization

Present Flexibilization vis a vis NTPC Experience

Preparation for future Variable Load Operation

Challenges Ahead & Solutions

NTPC Expectations

Conclusion

Description	NTPC	All India	% Share
Installed Capacity-Coal	59.6 GW	206.2 GW	29.2 %
Generation (BU)-Coal*	376.3	1146	32.8%
Installed Capacity-Total	73 GW	424.3 GW	17.2%
Generation (BU)-Total*	399.3	1624	24.6%

* Gen figs are for FY 2022-23

- Total Gen: NTPC Contributes 1/4th in country's generation with only 1/6th share in installed Capacity
- Coal Gen: NTPC Contributes 1/3rd in country's generation.
- Performance: PLF of NTPC stations ~75% whereas national average is 64%

Installed Capacity-Coal

Generation (MU)-Coal

Fuel Tyree	Stations	Units	Capacity	
гиеттуре	Nos	Nos	MW	
	Fully Ov	wned		
Coal	27	121	52610	
Gas	7	32	4017	
Hydro	2	6	808	
Solar	15	15	403	
Total	51	174	57838	
	Joint Ventures/	Subsidiaries		
Coal	9	25	7664	
Gas	4	26	2494	
Hydro	9	31	2949	
Wind	3	3	163	
Solar	15	15	2716	
JV/Subs	40	100	15986	
Total	91	274	73824	

Demand Scenario and Flexibilization Requirements

Demand Scenario: Peak Demand Day-1 Sep 2023

18 IN (GW)

1 Son'22	Max	Min	Difference		
1 Sep 25		%			
Demand	239663	204587	35076	17%	
Thermal Gen	158988	152856	6132	4%	
RE Gen	44463	4264	40199	943%	
Hydro Gen	37048	25986	11062	43%	
NTPC Coal	53167	50016	3151	6%	

1. Present demand curve variations is moderate. Higher peaks & troughs expected by 2027 & 2032.

2. 40 GW of RE variation is absorbed largely by Hydro, Thermal & demand variation.

3. NTPC Coal contributes 51% of the Thermal Flexibility despite having only 28% share in coal capacity.

All India Demand, fuel wise generation and NTPC Group Coal Variation on 09/01/2023

Capacity Scenario: FY'24 to FY'32 (As per NEP-May 23)

Ins Cap FY'27 -610 GW

Ins Cap FY'32 -900 GW

Annual con growth	FY24-27	FY 27-32
Annual cap growth	15%	10%

Fuel FY'24 FY'27 FY'32 Coal+Lig 212516 235133 259643 24824 Gas 25038 24824 46850 52446 62178 Hvdro 7480 13080 19680 Nuclear Solar 71145 185566 364566 Wind 43940 72896 121895 Other RE 16390 25646 47636 Total 423359 609591 900422

44 4 7

 \checkmark Coal capacity increases marginally.

- \checkmark The share of Coal decreases rapidly from 50% to 29%.
- \checkmark Solar capacity share increase: 17% to 41%

Demand Scenarios: FY'24 to FY'32 (Cap Figs as per NEP -2023)

	01-Se	p-23		Evening	8 PM	After	rnoon 2PM	Night	- 2 AM	
Fuel Type	MW	On Bar %	MW on Bar	LF	MW delivered	LF	MW delivered	LF	MW delivered	
Coal+Lig	212516	86%	182764	85%	154435	86%	156263	88%	160832	>
Gas	25038	60%	15023	72%	10816	55%	8263	65%	9765	
Hydro	46850	80%	37480	60%	22488	70%	26236	50%	18740	
Nuclear	7480	80%	5984	75%	4488	75%	4488	75%	4488	
Solar	71145	70%	49802	0%	0	70%	34861	0%	0	
Wind	43940	70%	30758	58%	17840	30%	9227	45%	13841	
Other RE	16390	40%	6556	30%	1967	20%	1311	20%	1311	
Total	423359		328366		212034		240649		208977	

Expected Scenario (2026-27)										
				Even	ing 8 PM	Af	ternoon 2PM	Nigh	t 2 AM	
Fuel Type	MW	On Bar %	MW on Bar	LF	MW delivered	LF	MW delivered	LF	MW delivered	
Coal+Lig	235133	86%	202214	91%	183004	63%	127395	94%	190082	>
Gas	24824	40%	9930	72%	7149	42%	4170	65%	6454	
Hydro	52446	80%	41957	60%	25174	36%	15104	50%	20978	
Nuclear	13080	80%	10464	75%	7848	75%	7848	75%	7848	
Solar	185566	70%	129896	0%	0	80%	103917	0%	0	
Wind	72896	70%	51027	58%	29596	40%	20411	45%	22962	
Other RE	25646	40%	10258	30%	3078	20%	2052	20%	2052	
Total	609591		455747		255849		280897		250376	

Expected Scenario (2031-32)									
				Evening Pea	ak (8 PM)	After	noon 2PM	Night	- 2 AM
Fuel Type	MW	On Bar %	MW on Bar	LF	MW delivered	LF	MW delivered	LF	MW delivered
Coal+Lig	259643	86%	223293	100%	223293	44%	98249	100%	223293
Gas	24824	40%	9930	72%	7149	42%	4170	65%	6454
Hydro	62178	80%	49742	60%	29845	36%	17907	50%	24871
Nuclear	19680	80%	15744	75%	11808	75%	11808	75%	11808
Solar	364566	70%	255196	0%	0	80%	204157	0%	0
Wind	121895	70%	85327	58%	49489	40%	34131	45%	38397
Other RE	47636	40%	19054	30%	5716	20%	3811	20%	3811
Total	900422		658286		327301		374233		308634
					240552				220010

1 Sep'23-Peak Demand Day (239 GW):

- 2 PM: 65% of Peak demand met by Coal & 14% by Solar
- Solar variation 34 GW (14%) absorbed by Wind (5 GW), Hydro (8 GW) Gas (2 GW), coal (8 GW) & demand variation (11 GW).

2026-27:

- ✤ Peak Demand: 277 GW
- ◆ 2 PM: 45% from Solar & 37% from Coal
- Solar fluctuates from 0 to 37% (104 GW) which is to be accommodated by Wind (10 GW), Hydro (10 GW) Gas (3 GW), Coal (56 GW) & demand variation (25 GW)

2031-32:

- ✤ Peak Demand: 366 GW
- ◆ **2 PM**: 55% from Solar & 26% from Coal
- Solar fluctuates from 0 to 55% (204 GW) which is to be accommodated by Wind (15 GW), Hydro (12 GW) Gas (3 GW), Coal (125 GW) & demand variation (42 GW)
- ✤ Storage Solutions to supply 10 to 20 GW

Flexible Operation at NTPC- Business Requirements; Intervention Areas

Flexible Operation at NTPC: Business Requirements

9

Business Requirements

Technical

Faster Ramps

Stable Lower Load

Safe Operation

Environment Friendly

• 11 A & 1.8

Commercial

To Make Station Flex Ready

- Part Load Operation Compensation
- Incentivization for Part load Operation

Intervention Areas

Boiler

Turbine

Operations

Control Systems

On an average NTPC Units Flex 15 GW on daily basis. Non Pit Head Stations Flex from 55% to 100%. This has resulted in challenges in Boiler, Turbine, Control Systems which NTPC is addressing on continuous basis.

Boiler- Fatigue Failure Control

Mitigation Measures

During Unit Operation	Ramping: Large variation in Steam Temp (25 to 40 C)
	Mitigation: Loop Tunning Groups
(Damage Mechanism due to large variation in Steam temperatures)	Optimum Scheduling: Engagement with grid agency to optimize load variations.
	Condensate blockade in pendant loops during high spray to control tube metal temperature.
- · · · ·	

During UnitIdentifying Incipient Defects by Cyclic Hydro.ShutdownDry air preservation to prevent tube pitting.

During Unit Overhaul	Attachment modifications as per EPRI guidelines.				
	Both Side Fin Welding (earlier only one side).				
	Checking of attachments by DPT.				
	Checking of innermost bend for cracks.				
	Adoption of RFET, AET, Exfoliation, Ther Flow, Thermovision test				
and tra					

Source: EPRI

Turbine- Challenges and Mitigation Measures

High Vibration of Rotor Train.

Increased Ovality & Decreasing hardness of Casings.

Increased Potential of LP Blade Failure.

Severe Deposition on Turbine Blades.

Damage to Turbine Valves

Challenges

Excessive Exhaust Hood spray leading to LP blade erosion

Challenges	Actions
HP casing crack	RLA of casing every 6 yrs (13 yrs). Replacement of casings & rotor in 15 yrs (25 Yrs)
Chance of LP blade crack	Frequent inspection- 2 yrs (4 Yrs) , MPI- In-situ PAUT- 2 yrs (4 yrs)
LP Turbine blade fluttering	Mistuning of free standing blades, Installation of BVMS system
High vibration of rotor trains	Turbine Bearings inspection in every 2 yrs (4 yrs).
Increasing ovality & reduction in hardness of Casing	More frequent replacement of casings, rotors.

Damages of steam valve internals Frequent inspection & maintenance

High metal temperature of blading, seals, Turbine rotating and stationary structures as well as Cold Reheat Piping => excessive distortion and/or creep damage (Casing and Rotor)

Operations and Controls- Challenges and Mitigation

Area	Challenges	Mitigation Measures
Operations	 High Ash deposition on ducts. Soot blowing difficulty, Need > 70% load for 3 hr in a day Flame disturbance tripping on Coal Quality variations Higher chances of outage due to single Aux Eqp approach. Chemistry parameter variation (PH, Conductivity, DO etc) 	 Unlearn and Relearn Strategy New Operational Practices
Controls	AGCRGMO	Loop TuningInterventions through Policy advocacy for changes in procedures

Variations in coal quality

Combustion and Flame Stability

Ash Deposition at Low Loads

Tuning - Control loops

Flexible Operation at NTPC- Partnerships and Tests with Expert Agencies/OEM's

Learning Outside

1.44

+ + + +

1 4 4 5

D::

Study Associates	Station	Scope
J-Coal/TEPCO, Japan Vindhyachal 11, Mauda 3,4– 500 MW		MTL @55% with 3% ramping. Efficiency at different part load condition
IGEF/VGBE, Germany	Dadri U 6 (500MW)	MTL (40%) & 3% Ramping
GE, USA	Talcher-K Unit 1 (500 MW)	MTL (40%)
USAID/BHEL	Mauda Unit 2 (500 MW)	MTL (40%)
EPRI, USA	Solapur, Gadarwara, Simhadri, Bongaigaon, Farakka and Unchahar	Identifying gaps in O&M practices
USAID/INTERTEK, USA	Ramagundam U#2 (200 MW) Jhajjar U# 1 (500 MW)	Cost of flexing due to start up and load following
Engie Lab (France/Belgium)	Dadri Unit 4 (200 MW) Farakka Unit 6 (500 MW)	Strategy for transition to flexible opn. and Estimation of Capital Cost

Common Observations of the Pilot Studies

- Parameter Fluctuation
 - Excessive fluctuations in Steam temperatures.
 - High Drum level swings during ramping.
- Flame disturbance during ramping.
- Occasional furnace pressurisation.
- Stalling of Primary Air fans at low loads.
- Low boiler flue gas exit temperature, leading to acid corrosion.

Flexible Operation at NTPC-Implementation of Learnings

Processes Implemented

- ✓ Intelligent Proactive Process control
 - (MS HRH temp, Flue gas temp. etc.)
- ✓ Single drive operation (Higher Efficiency & Lower Reliability)
- ✓ Automated Milling System
- ✓ Condition monitoring system
- \checkmark Combustion Optimisation
- ✓ Boiler Fatigue Monitoring system (BFMS)
- ✓ Unit Response Optimisation (Reduce Over & Undershoots)

Work with M/s Siemens & Emerson

Hardware E&C (Control panel, BFP R/c valves replaced)

ID, FD ,PA , Mill SGC

Sliding pressure implementation

TDBFP and MDBFP SGC

BFMS : Commissioning done

Condensate throttling, Unit control, Drum & S/H control

NTPC Strategy for Variable Load Operation

3-Pronged Strategic Approach for Variable Load Operation

Technology

- Control & Monitoring System for early warning & smooth operation
- Schematic & Technological/Metallurgical upgrades
- Partnership (National/Global)

 OEM/Expert Support • Boiler Combustion System **Boiler Fatigue Monitoring System** Vibration Monitoring System • Control Optimization etc

Process

- Capital OH reduced from 6 to 4 Yrs.
- Optimisation of Overhauling Interval
- Control Loop Tuning
- Studies- OEM / Experts

Regulatory Support

- Incentives for making units Flex Ready
- Compensation Mechanisms for Low Load Operation
- Higher Incentives for Voluntary low load contribution.
- Uniform implementation for all grid connected entities irrespective of Ownership

19

People

- Training & Development.
- Centralized Tuning group
- Collaboration with International agencies like EPRI, JICA etc
- Simulator training

NTPC Expectations

Industry Peers

- All Gencos including states at 55% MTL
- OEM support
- Collaboration

Regulators

- Compensation for life consumption (Capex,Opex, Additional Spares)
- Incentivization

Grid Operator

- Flexible Rules and Procedures
- Stable Grid, Less frequency variations
- Forecasting

Govt of India

Govi of India

- Policy Support
- Low Cost Funding
- Balanced capacity

Change is Inevitable; Growth is Optional

20

21

- Criterion: Based on COD. The criterion for selecting of the units should be more inclusive and should inter-alia include the factors like Size, Location, Age, ECR, Distance from mines, Environmental issues, OEM availability etc
- Pilot: 11 Units. More data
- Treatment of Supercritical Units: Dry to wet Changeover
- Technical Challenges
 - Flame Stability: Poor Coal, Rainy Season
 - Ash Settlement
 - Attachment Failures

22

Additional Capital Spares

Capex: (Systems/modificati ons required.)	Drive Turbine ACV modification / BFP R/C valve modification
	Condition Monitoring System (BFMS; TSE; Rotor Flux Monitor; Partial Discharge Monitor)
	Control equipment/strategies upgradation
	Turbine VMS (Blade VMS; Casing VMS)
	Combustion Optimisation Module

Approximate Cost: 90 Cr

• Irrespective of R&M

Fixed Cost: Penalty to be removed as generator is bearing the cost in DSM. Double penalty will adversely impact generator viability.

O&M Cost:Due to increased life consumption (damage cost). Introduce Flexibility Factor

Thank You

