Sodium Ion Battery

WATTHOUR Private Limited

By Milind Dongre

Contact :

milind.dongre@watthour24.com +91-8291163925

Team Profile

Dr. Karthik Kaliappan

Post-Doctoral Fellowship from Western University, London, Canada.

Battery Design and Fabrication

Dr. Vaibhav Acham

Ph. D. from CSIR- National Chemical Laboratory, Pune – India and Humboldt University, Berlin – Germany..

Catayst Design and Chemical Sythesis

Dr. Sachin Jadhav

Ph. D from IIT-Mumbai.

Chemical Process Design and New Material Synthesis

Dr. Arjunan

Ph. D from University of Madras

Battery Fabrication and Separator Design

Milind Dongre

B. Tech. IIT-Madras , MBA, IIM-C

Marketing, Finance and Product Design

GLOBAL LAND-OCEAN TEMPERATURE INDEX

Data source: NASA's Goddard Institute for Space Studies (GISS). Credit: NASA/GISS

Global Temperature Anomaly(Difference between Pre-Industrial Era and

Present

Sodium Ion Battery(SIB) and its USP

- Using Earth Abundant Materials
- Can Scale Up Quickly
- No Supply Chain Issues
- Lithium, Nickel, Cobalt and even graphite have Geopolitical, supply related and Ecological and Human Rights related Risks.
- No China Dominance
- We will use Hard Carbon + Tin + Sb as Anode in SIB

Sodium Ion Battery Cost Calculations

			N	Drieiner				Lab						
				Pricing n	nodel given b	y Argonne Na	ational	Lap						
			\succ	Please lo	ok at Na+//Gr	[·] row for Tota	al Mate	rial Cost (\$	/kWh),					
				CAM is C	athode Active	Material an	d with	economics	ofscal	e the co	nst			
				will come				coononnoc	01 0001		551			
					UUWII									
Battery <u>Cell</u> <u>E</u> nerg	y and Co <u>st</u> M	lodel (CellEst)		Input Variables	Literature Properties									
Cell Chemistry	Total energy capacity of production facility [GWh]	Number of produced cells [# of cells]	CAM used [t]	CAM material cost [\$/kWh]	CAM preparation cost [\$/kWh]	Anode cost [\$/kWh]	Binder [\$/kWh]	Conductive Carbon [\$/kWh]	Positive Current Collector [\$/kWh]	Negative Current Collector [\$/kWh]	Separator [\$/kWh]	Electrolyte [\$/kWh]	Packagin g foil [\$/kWh]	Total Material Cost [\$/kWh]
NCA//Gr Panasonic Use														
Case	1	1,02,71,439	1,520	19.78	12.94	13.42	2 2.52	0.72	2 1.44	3.93	0.47	4.83	1.49	61.55
NCA // Gr	1	1,05,58,008	1,563	22.92	13.30	13.45	5 2.57	0.74	1.48	4.04	0.48	4.85	1.53	65.37
NMC-111 // Gr	1	1,16,99,787	1,874	30.24	15.85	13.71	2.90	0.84	1.79	4.87	0.58	4.95	1.70	77.42
NMC-442 // Gr	1	1,15,13,684	1,814	24.48	15.58	13.67	2.83	0.82	2. 1.73	4.72	0.56	4.93	1.67	70.99
NMC-532 // Gr	1	1,13,43,852	1,758	24.64	15.09	13.62	2 2.78	0.80	1.68	4.57	0.54	4.91	1.65	5 70.28
NMC-622 // Gr	1	1,08,61,561	1,655	24.06	14.14	13.54	1 2.67	0.77	1.58	4.31	0.51	4.88	1.58	68.03
NMC-811 // Gr	1	1,06,18,010	1,563	20.97	13.35	13.46	6 2.57	0.74	1.49	4.07	0.48	4.85	1.54	63.53
LMO // Gr	1	1,41,05,875	5 2,356	9.77	14.89	13.19	3.33	0.98	3 2.44	6.63	0.79	4.78	2.05	5 58.84
LMNO // Gr	1	1,14,13,272	2. 1,884	10.59	11.90	11.35	5 2.73	0.80) 1.91	5.21	0.62	4.11	1.66	50.89
LR-NMC // Gr	1	1,00,59,581	1,391	18.71	11.88	13.48	3 2.40	0.68	3 1.34	3.65	0.43	4.85	1.46	58.89
Li-S // Gr	1	61,45,050	373	2.15	2.98	77.05	5 1.35	0.35	0.38	1.03	0.12	4.60	0.89	90.90
Na+ // Gr	1	1,16,51,297	1,867	0.59	14.93	12.05	5 2.76	0.81	1.90	5.17	0.61	4.36	1.69	<mark>44.87</mark>
LFP // Gr	1	1,52,40,256	5 2,121	7.28	21.61	15.52	3.28	0.95	5 2.52	6.86	0.81	5.62	2.21	66.66

Battery comparison

	Sodium-ion battery	Lithium-ion battery	Lead-acid battery
Cost per kilowatt-hour of capacity	<u>\$40–77 (theoretical in 2019)[52]</u>	<u>\$137 (average in 2020).[53]</u>	<u>\$100–300</u>
Volumetric energy density	250–375 W·h/L, based on prototypes[55]	<u>200–683 W·h/L</u>	<u>80–90 W·h/L</u>
<u>Gravimetric energy density (specific</u> <u>energy)</u>	75–200 W·h/kg, based on prototypes and product announcements	<u>120–260 W·h/kg (without protective case</u> needed for battery pack in Vehicle)	<u>35–40 Wh/kg</u>
Cycles at 80% depth of discharge[a]	Hundreds to thousands	<u>3,500</u>	<u>900</u>
Safety	Low risk for aqueous batteries, high risk for Na in carbon batteries	High risk[b]	Moderate risk
Materials	Earth-abundant	Scarce	Тохіс
Cycling stability	High (negligible self-discharge)	High (negligible self-discharge)	<u>Moderate (high self-discharge)</u>
Direct current round-trip efficiency	up to 92%	85-95%[60]	70–90%
Temperature range[c]	<u>-20 ° C to 60 ° C</u>	Acceptable:-20 °C to 60 °C. Optimal: 15 °C to 35 °C	<u>-20 ° C to 60 ° C</u>

Competitors Comparison

NAME	Specific Capacity in mAh/g or Wh/Kg	Chemistry	Cost in \$/kW	Cycle Life	Operating Temp in Celsius	Charging Time in Minutes
Faradion	155	NaxNiyMnzMgaTibO2	85	1200	-15 to 68	20
Natron	16.5 Wh/kg	Prussian Blue analogue electrodes as Cathode	65	50000	-20 to 45	14
TIAMAT	140	$Na_xV_2(PO_4)_2F_3$	95	2000	-20 to 68	15
CATL	160	Prussian White Cathode	70	1500	-20 to 70	15
HiNa	138	Na-Fe-Mn-Cu based oxide cathodes	80	3000	-15 to 60	20
Atris	160	Iron based Prussian White	85	5000	-15 to 65	25
WATTHOUR	110	Prussian Blue Analogue Cathode and Porous Hard Carbon Anode	65	3000	-20 to 70	15
NORTHVOLT	160 Wh/Kg	Prussian Blue analogue electrodes	85	2000	-15 to 65	15

* Tentative Data collected from Various Internet search

Global Demand & Supply Forecast

- Global Supply will be close to 5.5 Tera
 Wh by 2030
- There are 300 Major Manufacturing Facilities globally
- Global Demand by 2030 is expected to be close to 8.8 Tera Wh
- Electric Vehicles and Renewable Energy sector driven demand
- There may be supply short fall by 3.3 TWh by 2030.

*Includes demand from transportation and energy sectors. Source: Rystad Energy BatteryCube, Rystad Energy research and analysis

Indian Demand for Battery

- India has almost 300 Million Fossil Fule based vehicles at present
- The Electric Vehicle Batteries Market is expected to reach a value of \$175.11 billion by 2028, at a CAGR of 26% during the forecast period 2022-2028
- Total Indian Demand may be around 2560 GWh by 2030 as we have largest market of Electric Two Wheelers and affordable Cars
- Currently In India there is almost no Manufacturing plant for Lithium or Sodium Ion Batteries
- I have met Central Govt Minister Mr. R K Singh and requested his team to speed up VGF Scheme Roll Out
- Indian Govt encouraging all companies to produce energy saving devices
- Renewable Energy firm requested us to make 500 MWh asap, very pressing demand
- Indian Scenario is very attractive as there is very low Supply and potentially Huge Demand in coming decade

*Source Niti Ayog

EV (considering 30% penetration by 2030)

Transportation sector	Energy storage per vehicle	Energy storage requirement (GWh)		
2 wheelers: 200 million	1–2.7 kWh	200–540		
4 wheelers: 40 million	10–20 kWh	400–800		
Buses: 3 million	100–324 kWh	300–970		
Energy storage demand for EVs in 2030 (GWh)	900–2300			
Energy storage demand in grid sector by 2030 (GWh)		260		

Meeting with Honorable Power Minister

We met with Honorable Power and MNRE Minister Shri R K Singh. We insisted to help us and speed up VGF Scheme processes.

His team is good and they want us to create plug and play product and this will benefit Renewable Energy and EV Firms a lot.

Potential Clients

- Solar, Wind, Waves Farms (Renewable Energy Firms)
- EV Manufacturers
- Hydel Power Plants
- Genset Manufacturers
- Defense
- ➢ Railways
- > Drones

* Prelim talks held and clients are very keen as they have a pressing requirement for this product. Discussed with a big client (Renewable Energy Firms) who wanted us to make 500 MWh storage Capacity. Demand is huge and very urgent one.

Product Roadmap

YEAR	TARGET
2023	Create a commercially viable prototype Battery- Achieved
2024-25	Commercial Production
2025-26	Enhance the capacity to 160 mAh/g
2026-28	Develop certain combination of Quasi State Separator and Electrolytes to achieve high lon Conductivity and enhance capacity close to 500 mAh/g.
2027-29	Develop room temperature Sodium-Sulphur , Lithium Air or similar very high Capacity, close to 1100 mAh/g Sodium Ion batteries

Demo of Our Sodium Ion Batteries

Voltage Before Charging the Battery in 130.2 Milli Volts

We can provide Old Test Data

This is a Video while Charging. The Battery Voltage is Close to 0.93 Volts. It proves that Battery gains Voltages and Charges Successfully. Youtube Link https://www.youtube.com/shorts/gFBD3mPkHac

Cycle Life of Sodium Ion Batteries -- Old Test Data

Capacity of Sodium Ion Batteries -- Old Test Data

Efficiency of Sodium Ion battery- Old Data

In House Synthesized Prussian Blue Cathode Material

In House Synthesized Prussian Blue Cathode Material

Pos.	Height [cts]	FWHM Left	d-spacing [Å]	Rel. Int. [%]
[° 2Th.]		[° 2Th.]		
17.3511	727.41	0.1574	5.11100	100.00
24.6414	313.51	0.1574	3.61291	43.10
35.1266	276.09	0.1968	2.55481	37.96
39.4932	161.84	0.2755	2.28182	22.25
50.5735	79.21	0.3936	1.80484	10.89
53.8846	66.04	0.2362	1.70150	9.08
57.0565	60.65	0.2362	1.61422	8.34
79.4616	21.34	0.4723	1.20613	2.93

Peak List Data and Graph

Grant / Investment and its Usages

- We have NDA signed with IIT-Mumbai and can use Pilot Line
- Grant / Investment will be used to make Commercial Grade, plug and play Prototype as most of required materials can be synthesized in house
- We have already synthesized some Cathodes like Prussian Blue, NVP, NNM and Separators and Anode as Hard Carbon.
- > We are trying to synthesize New and hgh Capacity Anode material and soon we will have some samples
- > Other required materials are of low cost and are available easily
- > We have experienced Fabriation Team to fabricate and to test these Batteries
- We have contacted Pilot Line or Mini Plant Machine Suppliers and they can provide machines and install that in less time.

Immediate Investment Required for Protoype

- ➢ We have made NDA with IIT-Mumbai for Pilot Line Usage.
- ➤ This is a paid services and we need to pay 350000 INR + Taxes for 5 days usages.
- > We can make and test 100 batteries per day in Pilot Line at IIT-Mumbai
- ➢ In-House Lab can synthesize Cathode , Anode, Separators, Electrolytes etc.
- > This reduces cost for our Batteries even further and speeds up the process
- ➢ We need around 2 Crore INR or around 250000 USD to make Prototype.

Investment for Pilot Line Cost

- Daily Productivity: 800-1000 pieces/8Hours/Day
- > 18650 Cylindrical Cell and Capacity: 2.3 Volts, 1.2 Ah
- Cost of machines for Cylindrical Cell Pilot Line : 0.7 Millions USD
- Operating Cost for Cylindrical Cell Pilot Line : 0.55 Millions USD
- ➢ Total Cost for Cylindrical Cell : 1.25 Millions USD
- Daily Productivity: 800-1000 pieces/8Hours/Day
- Pouch Cell Size L*W*H:70*35*5 mm and Capacity: 2.3 Volts, 1.2 Ah
- Cost of machines for Pouch Cell Pilot Line : 0.8 Millions USD
- Operating Cost for Pouch Cell Pilot Line : 0.45 Millions USD
- ➢ Total Cost for Pouch Cell : 1.25 Millions USD

*Best Estimates numbers based of given Quotations

Investment Needed and Its Usages for 1GWh Plant

Investment Costs	SIB
Capital equipment cost including installation, mil\$	27.5
Building, Land and Utilities	
Area, m2	10800
Cost, \$/m2	700
Building investment, mil\$	7.5
Launch Costs (Marketing, Admin, R&D , Salaries, Legal, Insurance, Miscellaneous) , mil\$	7.60
Working capital (30% of annual variable costs), mil\$	24.90
Total investment, mil\$	67.5

* We have used Bat-pac-V2 by Argonne National Lab Model to get above numbers for Indian Conditions. These are best Estimates given Quotations of Manufacturing Machine Suppliers.

Certificate of Participation

This is to certify that Mr. *Milind Dongre* of Team *Watthour Pvt Ltd* was selected for the 2023 **Regional Cohort** of the **Boeing University Innovation Leadership Development**

Program and successfully completed Regional Level workshops held from 18th December to 20th December at

SINE IIT Bombay

We participated in a Bootcamp by Boeing Company. There was significant interest in our work in this program.

Questions & Answers

Thanks You